Metamath Proof Explorer


Theorem lpolvN

Description: The polarity of the whole space is the zero subspace. (Contributed by NM, 26-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolv.v 𝑉 = ( Base ‘ 𝑊 )
lpolv.z 0 = ( 0g𝑊 )
lpolv.p 𝑃 = ( LPol ‘ 𝑊 )
lpolv.w ( 𝜑𝑊𝑋 )
lpolv.o ( 𝜑𝑃 )
Assertion lpolvN ( 𝜑 → ( 𝑉 ) = { 0 } )

Proof

Step Hyp Ref Expression
1 lpolv.v 𝑉 = ( Base ‘ 𝑊 )
2 lpolv.z 0 = ( 0g𝑊 )
3 lpolv.p 𝑃 = ( LPol ‘ 𝑊 )
4 lpolv.w ( 𝜑𝑊𝑋 )
5 lpolv.o ( 𝜑𝑃 )
6 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
7 eqid ( LSAtoms ‘ 𝑊 ) = ( LSAtoms ‘ 𝑊 )
8 eqid ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 )
9 1 6 2 7 8 3 islpolN ( 𝑊𝑋 → ( 𝑃 ↔ ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { 0 } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) ) )
10 4 9 syl ( 𝜑 → ( 𝑃 ↔ ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { 0 } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) ) )
11 5 10 mpbid ( 𝜑 → ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { 0 } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) )
12 simpr1 ( ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { 0 } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) → ( 𝑉 ) = { 0 } )
13 11 12 syl ( 𝜑 → ( 𝑉 ) = { 0 } )