| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpolcon.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lpolcon.p |
⊢ 𝑃 = ( LPol ‘ 𝑊 ) |
| 3 |
|
lpolcon.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
| 4 |
|
lpolcon.o |
⊢ ( 𝜑 → ⊥ ∈ 𝑃 ) |
| 5 |
|
lpolcon.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 6 |
|
lpolcon.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑉 ) |
| 7 |
|
lpolcon.c |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
| 8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑊 ) = ( LSAtoms ‘ 𝑊 ) |
| 11 |
|
eqid |
⊢ ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 ) |
| 12 |
1 8 9 10 11 2
|
islpolN |
⊢ ( 𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) ) ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) ) ) |
| 14 |
4 13
|
mpbid |
⊢ ( 𝜑 → ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) ) |
| 15 |
|
simpr2 |
⊢ ( ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ) |
| 16 |
5 6 7
|
3jca |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ) |
| 17 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 18 |
17
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉 ) |
| 19 |
5 18
|
sylibr |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑉 ) |
| 20 |
17
|
elpw2 |
⊢ ( 𝑌 ∈ 𝒫 𝑉 ↔ 𝑌 ⊆ 𝑉 ) |
| 21 |
6 20
|
sylibr |
⊢ ( 𝜑 → 𝑌 ∈ 𝒫 𝑉 ) |
| 22 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉 ) ) |
| 23 |
|
biidd |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ⊆ 𝑉 ↔ 𝑦 ⊆ 𝑉 ) ) |
| 24 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦 ) ) |
| 25 |
22 23 24
|
3anbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) ↔ ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ 𝑋 ) ) |
| 27 |
26
|
sseq2d |
⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ↔ ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 28 |
25 27
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ↔ ( ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 29 |
|
biidd |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉 ) ) |
| 30 |
|
sseq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ⊆ 𝑉 ↔ 𝑌 ⊆ 𝑉 ) ) |
| 31 |
|
sseq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌 ) ) |
| 32 |
29 30 31
|
3anbi123d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) ↔ ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ 𝑌 ) ) |
| 34 |
33
|
sseq1d |
⊢ ( 𝑦 = 𝑌 → ( ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 35 |
32 34
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ↔ ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 36 |
28 35
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ↔ ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 37 |
36
|
spc2gv |
⊢ ( ( 𝑋 ∈ 𝒫 𝑉 ∧ 𝑌 ∈ 𝒫 𝑉 ) → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) → ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 38 |
19 21 37
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) → ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 39 |
16 38
|
mpid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 40 |
15 39
|
syl5 |
⊢ ( 𝜑 → ( ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 41 |
14 40
|
mpd |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |