Step |
Hyp |
Ref |
Expression |
1 |
|
lpolcon.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lpolcon.p |
⊢ 𝑃 = ( LPol ‘ 𝑊 ) |
3 |
|
lpolcon.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝑋 ) |
4 |
|
lpolcon.o |
⊢ ( 𝜑 → ⊥ ∈ 𝑃 ) |
5 |
|
lpolcon.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
6 |
|
lpolcon.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑉 ) |
7 |
|
lpolcon.c |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑊 ) = ( LSAtoms ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 ) |
12 |
1 8 9 10 11 2
|
islpolN |
⊢ ( 𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) ) ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) ) ) |
14 |
4 13
|
mpbid |
⊢ ( 𝜑 → ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) ) |
15 |
|
simpr2 |
⊢ ( ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ) |
16 |
5 6 7
|
3jca |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ) |
17 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
18 |
17
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉 ) |
19 |
5 18
|
sylibr |
⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑉 ) |
20 |
17
|
elpw2 |
⊢ ( 𝑌 ∈ 𝒫 𝑉 ↔ 𝑌 ⊆ 𝑉 ) |
21 |
6 20
|
sylibr |
⊢ ( 𝜑 → 𝑌 ∈ 𝒫 𝑉 ) |
22 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉 ) ) |
23 |
|
biidd |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ⊆ 𝑉 ↔ 𝑦 ⊆ 𝑉 ) ) |
24 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑦 ) ) |
25 |
22 23 24
|
3anbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) ↔ ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ 𝑋 ) ) |
27 |
26
|
sseq2d |
⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ↔ ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
28 |
25 27
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ↔ ( ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
29 |
|
biidd |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⊆ 𝑉 ↔ 𝑋 ⊆ 𝑉 ) ) |
30 |
|
sseq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ⊆ 𝑉 ↔ 𝑌 ⊆ 𝑉 ) ) |
31 |
|
sseq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑌 ) ) |
32 |
29 30 31
|
3anbi123d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) ↔ ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) ) ) |
33 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( ⊥ ‘ 𝑦 ) = ( ⊥ ‘ 𝑌 ) ) |
34 |
33
|
sseq1d |
⊢ ( 𝑦 = 𝑌 → ( ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
35 |
32 34
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ↔ ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
36 |
28 35
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ↔ ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
37 |
36
|
spc2gv |
⊢ ( ( 𝑋 ∈ 𝒫 𝑉 ∧ 𝑌 ∈ 𝒫 𝑉 ) → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) → ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
38 |
19 21 37
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) → ( ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ∧ 𝑋 ⊆ 𝑌 ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
39 |
16 38
|
mpid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
40 |
15 39
|
syl5 |
⊢ ( 𝜑 → ( ( ⊥ : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑉 ) = { ( 0g ‘ 𝑊 ) } ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
41 |
14 40
|
mpd |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |