Metamath Proof Explorer


Theorem lpolconN

Description: Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolcon.v 𝑉 = ( Base ‘ 𝑊 )
lpolcon.p 𝑃 = ( LPol ‘ 𝑊 )
lpolcon.w ( 𝜑𝑊𝑋 )
lpolcon.o ( 𝜑𝑃 )
lpolcon.x ( 𝜑𝑋𝑉 )
lpolcon.y ( 𝜑𝑌𝑉 )
lpolcon.c ( 𝜑𝑋𝑌 )
Assertion lpolconN ( 𝜑 → ( 𝑌 ) ⊆ ( 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lpolcon.v 𝑉 = ( Base ‘ 𝑊 )
2 lpolcon.p 𝑃 = ( LPol ‘ 𝑊 )
3 lpolcon.w ( 𝜑𝑊𝑋 )
4 lpolcon.o ( 𝜑𝑃 )
5 lpolcon.x ( 𝜑𝑋𝑉 )
6 lpolcon.y ( 𝜑𝑌𝑉 )
7 lpolcon.c ( 𝜑𝑋𝑌 )
8 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
9 eqid ( 0g𝑊 ) = ( 0g𝑊 )
10 eqid ( LSAtoms ‘ 𝑊 ) = ( LSAtoms ‘ 𝑊 )
11 eqid ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 )
12 1 8 9 10 11 2 islpolN ( 𝑊𝑋 → ( 𝑃 ↔ ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { ( 0g𝑊 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) ) )
13 3 12 syl ( 𝜑 → ( 𝑃 ↔ ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { ( 0g𝑊 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) ) )
14 4 13 mpbid ( 𝜑 → ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { ( 0g𝑊 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) )
15 simpr2 ( ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { ( 0g𝑊 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) → ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) )
16 5 6 7 3jca ( 𝜑 → ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) )
17 1 fvexi 𝑉 ∈ V
18 17 elpw2 ( 𝑋 ∈ 𝒫 𝑉𝑋𝑉 )
19 5 18 sylibr ( 𝜑𝑋 ∈ 𝒫 𝑉 )
20 17 elpw2 ( 𝑌 ∈ 𝒫 𝑉𝑌𝑉 )
21 6 20 sylibr ( 𝜑𝑌 ∈ 𝒫 𝑉 )
22 sseq1 ( 𝑥 = 𝑋 → ( 𝑥𝑉𝑋𝑉 ) )
23 biidd ( 𝑥 = 𝑋 → ( 𝑦𝑉𝑦𝑉 ) )
24 sseq1 ( 𝑥 = 𝑋 → ( 𝑥𝑦𝑋𝑦 ) )
25 22 23 24 3anbi123d ( 𝑥 = 𝑋 → ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) ↔ ( 𝑋𝑉𝑦𝑉𝑋𝑦 ) ) )
26 fveq2 ( 𝑥 = 𝑋 → ( 𝑥 ) = ( 𝑋 ) )
27 26 sseq2d ( 𝑥 = 𝑋 → ( ( 𝑦 ) ⊆ ( 𝑥 ) ↔ ( 𝑦 ) ⊆ ( 𝑋 ) ) )
28 25 27 imbi12d ( 𝑥 = 𝑋 → ( ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ↔ ( ( 𝑋𝑉𝑦𝑉𝑋𝑦 ) → ( 𝑦 ) ⊆ ( 𝑋 ) ) ) )
29 biidd ( 𝑦 = 𝑌 → ( 𝑋𝑉𝑋𝑉 ) )
30 sseq1 ( 𝑦 = 𝑌 → ( 𝑦𝑉𝑌𝑉 ) )
31 sseq2 ( 𝑦 = 𝑌 → ( 𝑋𝑦𝑋𝑌 ) )
32 29 30 31 3anbi123d ( 𝑦 = 𝑌 → ( ( 𝑋𝑉𝑦𝑉𝑋𝑦 ) ↔ ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) ) )
33 fveq2 ( 𝑦 = 𝑌 → ( 𝑦 ) = ( 𝑌 ) )
34 33 sseq1d ( 𝑦 = 𝑌 → ( ( 𝑦 ) ⊆ ( 𝑋 ) ↔ ( 𝑌 ) ⊆ ( 𝑋 ) ) )
35 32 34 imbi12d ( 𝑦 = 𝑌 → ( ( ( 𝑋𝑉𝑦𝑉𝑋𝑦 ) → ( 𝑦 ) ⊆ ( 𝑋 ) ) ↔ ( ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) ) ) )
36 28 35 sylan9bb ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ↔ ( ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) ) ) )
37 36 spc2gv ( ( 𝑋 ∈ 𝒫 𝑉𝑌 ∈ 𝒫 𝑉 ) → ( ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) → ( ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) ) ) )
38 19 21 37 syl2anc ( 𝜑 → ( ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) → ( ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) → ( 𝑌 ) ⊆ ( 𝑋 ) ) ) )
39 16 38 mpid ( 𝜑 → ( ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) → ( 𝑌 ) ⊆ ( 𝑋 ) ) )
40 15 39 syl5 ( 𝜑 → ( ( : 𝒫 𝑉 ⟶ ( LSubSp ‘ 𝑊 ) ∧ ( ( 𝑉 ) = { ( 0g𝑊 ) } ∧ ∀ 𝑥𝑦 ( ( 𝑥𝑉𝑦𝑉𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) ) ∧ ∀ 𝑥 ∈ ( LSAtoms ‘ 𝑊 ) ( ( 𝑥 ) ∈ ( LSHyp ‘ 𝑊 ) ∧ ( ‘ ( 𝑥 ) ) = 𝑥 ) ) ) → ( 𝑌 ) ⊆ ( 𝑋 ) ) )
41 14 40 mpd ( 𝜑 → ( 𝑌 ) ⊆ ( 𝑋 ) )