| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p | ⊢  ⊕   =  ( LSSum ‘ 𝐺 ) | 
						
							| 2 |  | lsmcntz.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 3 |  | lsmcntz.t | ⊢ ( 𝜑  →  𝑇  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | lsmcntz.u | ⊢ ( 𝜑  →  𝑈  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | lsmdisj.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 6 |  | lsmdisj3b.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 7 |  | lsmdisj3a.2 | ⊢ ( 𝜑  →  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) ) | 
						
							| 8 | 1 6 | lsmcom2 | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑆  ⊆  ( 𝑍 ‘ 𝑇 ) )  →  ( 𝑆  ⊕  𝑇 )  =  ( 𝑇  ⊕  𝑆 ) ) | 
						
							| 9 | 2 3 7 8 | syl3anc | ⊢ ( 𝜑  →  ( 𝑆  ⊕  𝑇 )  =  ( 𝑇  ⊕  𝑆 ) ) | 
						
							| 10 | 9 | ineq1d | ⊢ ( 𝜑  →  ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  ( ( 𝑇  ⊕  𝑆 )  ∩  𝑈 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  }  ↔  ( ( 𝑇  ⊕  𝑆 )  ∩  𝑈 )  =  {  0  } ) ) | 
						
							| 12 |  | incom | ⊢ ( 𝑆  ∩  𝑇 )  =  ( 𝑇  ∩  𝑆 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝑆  ∩  𝑇 )  =  ( 𝑇  ∩  𝑆 ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑆  ∩  𝑇 )  =  {  0  }  ↔  ( 𝑇  ∩  𝑆 )  =  {  0  } ) ) | 
						
							| 15 | 11 14 | anbi12d | ⊢ ( 𝜑  →  ( ( ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  }  ∧  ( 𝑆  ∩  𝑇 )  =  {  0  } )  ↔  ( ( ( 𝑇  ⊕  𝑆 )  ∩  𝑈 )  =  {  0  }  ∧  ( 𝑇  ∩  𝑆 )  =  {  0  } ) ) ) | 
						
							| 16 | 1 3 2 4 5 | lsmdisj2a | ⊢ ( 𝜑  →  ( ( ( ( 𝑇  ⊕  𝑆 )  ∩  𝑈 )  =  {  0  }  ∧  ( 𝑇  ∩  𝑆 )  =  {  0  } )  ↔  ( ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  =  {  0  }  ∧  ( 𝑇  ∩  𝑈 )  =  {  0  } ) ) ) | 
						
							| 17 | 15 16 | bitrd | ⊢ ( 𝜑  →  ( ( ( ( 𝑆  ⊕  𝑇 )  ∩  𝑈 )  =  {  0  }  ∧  ( 𝑆  ∩  𝑇 )  =  {  0  } )  ↔  ( ( 𝑆  ∩  ( 𝑇  ⊕  𝑈 ) )  =  {  0  }  ∧  ( 𝑇  ∩  𝑈 )  =  {  0  } ) ) ) |