| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  |-  .(+) = ( LSSum ` G ) | 
						
							| 2 |  | lsmcntz.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | lsmcntz.t |  |-  ( ph -> T e. ( SubGrp ` G ) ) | 
						
							| 4 |  | lsmcntz.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 5 |  | lsmdisj.o |  |-  .0. = ( 0g ` G ) | 
						
							| 6 |  | lsmdisj3b.z |  |-  Z = ( Cntz ` G ) | 
						
							| 7 |  | lsmdisj3a.2 |  |-  ( ph -> S C_ ( Z ` T ) ) | 
						
							| 8 | 1 6 | lsmcom2 |  |-  ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ S C_ ( Z ` T ) ) -> ( S .(+) T ) = ( T .(+) S ) ) | 
						
							| 9 | 2 3 7 8 | syl3anc |  |-  ( ph -> ( S .(+) T ) = ( T .(+) S ) ) | 
						
							| 10 | 9 | ineq1d |  |-  ( ph -> ( ( S .(+) T ) i^i U ) = ( ( T .(+) S ) i^i U ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( ph -> ( ( ( S .(+) T ) i^i U ) = { .0. } <-> ( ( T .(+) S ) i^i U ) = { .0. } ) ) | 
						
							| 12 |  | incom |  |-  ( S i^i T ) = ( T i^i S ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( S i^i T ) = ( T i^i S ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( ph -> ( ( S i^i T ) = { .0. } <-> ( T i^i S ) = { .0. } ) ) | 
						
							| 15 | 11 14 | anbi12d |  |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( ( T .(+) S ) i^i U ) = { .0. } /\ ( T i^i S ) = { .0. } ) ) ) | 
						
							| 16 | 1 3 2 4 5 | lsmdisj2a |  |-  ( ph -> ( ( ( ( T .(+) S ) i^i U ) = { .0. } /\ ( T i^i S ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) ) | 
						
							| 17 | 15 16 | bitrd |  |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) ) |