| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  |-  .(+) = ( LSSum ` G ) | 
						
							| 2 |  | lsmcntz.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | lsmcntz.t |  |-  ( ph -> T e. ( SubGrp ` G ) ) | 
						
							| 4 |  | lsmcntz.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 5 |  | lsmdisj.o |  |-  .0. = ( 0g ` G ) | 
						
							| 6 |  | lsmdisj3b.z |  |-  Z = ( Cntz ` G ) | 
						
							| 7 |  | lsmdisj3b.2 |  |-  ( ph -> T C_ ( Z ` U ) ) | 
						
							| 8 | 1 2 4 3 5 | lsmdisj2b |  |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( U .(+) T ) ) = { .0. } /\ ( U i^i T ) = { .0. } ) ) ) | 
						
							| 9 | 1 6 | lsmcom2 |  |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) ) | 
						
							| 10 | 3 4 7 9 | syl3anc |  |-  ( ph -> ( T .(+) U ) = ( U .(+) T ) ) | 
						
							| 11 | 10 | ineq2d |  |-  ( ph -> ( S i^i ( T .(+) U ) ) = ( S i^i ( U .(+) T ) ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( ph -> ( ( S i^i ( T .(+) U ) ) = { .0. } <-> ( S i^i ( U .(+) T ) ) = { .0. } ) ) | 
						
							| 13 |  | incom |  |-  ( T i^i U ) = ( U i^i T ) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( T i^i U ) = ( U i^i T ) ) | 
						
							| 15 | 14 | eqeq1d |  |-  ( ph -> ( ( T i^i U ) = { .0. } <-> ( U i^i T ) = { .0. } ) ) | 
						
							| 16 | 12 15 | anbi12d |  |-  ( ph -> ( ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) <-> ( ( S i^i ( U .(+) T ) ) = { .0. } /\ ( U i^i T ) = { .0. } ) ) ) | 
						
							| 17 | 8 16 | bitr4d |  |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) ) |