Metamath Proof Explorer


Theorem lsmdisj3b

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p
|- .(+) = ( LSSum ` G )
lsmcntz.s
|- ( ph -> S e. ( SubGrp ` G ) )
lsmcntz.t
|- ( ph -> T e. ( SubGrp ` G ) )
lsmcntz.u
|- ( ph -> U e. ( SubGrp ` G ) )
lsmdisj.o
|- .0. = ( 0g ` G )
lsmdisj3b.z
|- Z = ( Cntz ` G )
lsmdisj3b.2
|- ( ph -> T C_ ( Z ` U ) )
Assertion lsmdisj3b
|- ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) )

Proof

Step Hyp Ref Expression
1 lsmcntz.p
 |-  .(+) = ( LSSum ` G )
2 lsmcntz.s
 |-  ( ph -> S e. ( SubGrp ` G ) )
3 lsmcntz.t
 |-  ( ph -> T e. ( SubGrp ` G ) )
4 lsmcntz.u
 |-  ( ph -> U e. ( SubGrp ` G ) )
5 lsmdisj.o
 |-  .0. = ( 0g ` G )
6 lsmdisj3b.z
 |-  Z = ( Cntz ` G )
7 lsmdisj3b.2
 |-  ( ph -> T C_ ( Z ` U ) )
8 1 2 4 3 5 lsmdisj2b
 |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( U .(+) T ) ) = { .0. } /\ ( U i^i T ) = { .0. } ) ) )
9 1 6 lsmcom2
 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) )
10 3 4 7 9 syl3anc
 |-  ( ph -> ( T .(+) U ) = ( U .(+) T ) )
11 10 ineq2d
 |-  ( ph -> ( S i^i ( T .(+) U ) ) = ( S i^i ( U .(+) T ) ) )
12 11 eqeq1d
 |-  ( ph -> ( ( S i^i ( T .(+) U ) ) = { .0. } <-> ( S i^i ( U .(+) T ) ) = { .0. } ) )
13 incom
 |-  ( T i^i U ) = ( U i^i T )
14 13 a1i
 |-  ( ph -> ( T i^i U ) = ( U i^i T ) )
15 14 eqeq1d
 |-  ( ph -> ( ( T i^i U ) = { .0. } <-> ( U i^i T ) = { .0. } ) )
16 12 15 anbi12d
 |-  ( ph -> ( ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) <-> ( ( S i^i ( U .(+) T ) ) = { .0. } /\ ( U i^i T ) = { .0. } ) ) )
17 8 16 bitr4d
 |-  ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) )