| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  |-  .(+) = ( LSSum ` G ) | 
						
							| 2 |  | lsmcntz.s |  |-  ( ph -> S e. ( SubGrp ` G ) ) | 
						
							| 3 |  | lsmcntz.t |  |-  ( ph -> T e. ( SubGrp ` G ) ) | 
						
							| 4 |  | lsmcntz.u |  |-  ( ph -> U e. ( SubGrp ` G ) ) | 
						
							| 5 |  | lsmdisj.o |  |-  .0. = ( 0g ` G ) | 
						
							| 6 |  | incom |  |-  ( S i^i ( T .(+) U ) ) = ( ( T .(+) U ) i^i S ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> T e. ( SubGrp ` G ) ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> S e. ( SubGrp ` G ) ) | 
						
							| 9 | 4 | adantr |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> U e. ( SubGrp ` G ) ) | 
						
							| 10 |  | incom |  |-  ( T i^i ( S .(+) U ) ) = ( ( S .(+) U ) i^i T ) | 
						
							| 11 |  | simprl |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S .(+) U ) i^i T ) = { .0. } ) | 
						
							| 12 | 10 11 | eqtrid |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i ( S .(+) U ) ) = { .0. } ) | 
						
							| 13 |  | simprr |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i U ) = { .0. } ) | 
						
							| 14 | 1 7 8 9 5 12 13 | lsmdisj2r |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( T .(+) U ) i^i S ) = { .0. } ) | 
						
							| 15 | 6 14 | eqtrid |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i ( T .(+) U ) ) = { .0. } ) | 
						
							| 16 |  | incom |  |-  ( T i^i U ) = ( U i^i T ) | 
						
							| 17 | 1 8 9 7 5 11 | lsmdisj |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S i^i T ) = { .0. } /\ ( U i^i T ) = { .0. } ) ) | 
						
							| 18 | 17 | simprd |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( U i^i T ) = { .0. } ) | 
						
							| 19 | 16 18 | eqtrid |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i U ) = { .0. } ) | 
						
							| 20 | 15 19 | jca |  |-  ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) | 
						
							| 21 | 2 | adantr |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> S e. ( SubGrp ` G ) ) | 
						
							| 22 | 3 | adantr |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> T e. ( SubGrp ` G ) ) | 
						
							| 23 | 4 | adantr |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> U e. ( SubGrp ` G ) ) | 
						
							| 24 |  | simprl |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( S i^i ( T .(+) U ) ) = { .0. } ) | 
						
							| 25 |  | simprr |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( T i^i U ) = { .0. } ) | 
						
							| 26 | 1 21 22 23 5 24 25 | lsmdisj2r |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( S .(+) U ) i^i T ) = { .0. } ) | 
						
							| 27 | 1 21 22 23 5 24 | lsmdisjr |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( S i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) | 
						
							| 28 | 27 | simprd |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( S i^i U ) = { .0. } ) | 
						
							| 29 | 26 28 | jca |  |-  ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) | 
						
							| 30 | 20 29 | impbida |  |-  ( ph -> ( ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) ) |