Metamath Proof Explorer


Theorem lsmdisj3b

Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmcntz.p ˙ = LSSum G
lsmcntz.s φ S SubGrp G
lsmcntz.t φ T SubGrp G
lsmcntz.u φ U SubGrp G
lsmdisj.o 0 ˙ = 0 G
lsmdisj3b.z Z = Cntz G
lsmdisj3b.2 φ T Z U
Assertion lsmdisj3b φ S ˙ T U = 0 ˙ S T = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙

Proof

Step Hyp Ref Expression
1 lsmcntz.p ˙ = LSSum G
2 lsmcntz.s φ S SubGrp G
3 lsmcntz.t φ T SubGrp G
4 lsmcntz.u φ U SubGrp G
5 lsmdisj.o 0 ˙ = 0 G
6 lsmdisj3b.z Z = Cntz G
7 lsmdisj3b.2 φ T Z U
8 1 2 4 3 5 lsmdisj2b φ S ˙ T U = 0 ˙ S T = 0 ˙ S U ˙ T = 0 ˙ U T = 0 ˙
9 1 6 lsmcom2 T SubGrp G U SubGrp G T Z U T ˙ U = U ˙ T
10 3 4 7 9 syl3anc φ T ˙ U = U ˙ T
11 10 ineq2d φ S T ˙ U = S U ˙ T
12 11 eqeq1d φ S T ˙ U = 0 ˙ S U ˙ T = 0 ˙
13 incom T U = U T
14 13 a1i φ T U = U T
15 14 eqeq1d φ T U = 0 ˙ U T = 0 ˙
16 12 15 anbi12d φ S T ˙ U = 0 ˙ T U = 0 ˙ S U ˙ T = 0 ˙ U T = 0 ˙
17 8 16 bitr4d φ S ˙ T U = 0 ˙ S T = 0 ˙ S T ˙ U = 0 ˙ T U = 0 ˙