| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltnelicc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ltnelicc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
ltnelicc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 4 |
|
ltnelicc.clta |
⊢ ( 𝜑 → 𝐶 < 𝐴 ) |
| 5 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 |
|
xrltnle |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶 ) ) |
| 7 |
3 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐶 ) ) |
| 8 |
4 7
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐴 ≤ 𝐶 ) |
| 9 |
8
|
intnanrd |
⊢ ( 𝜑 → ¬ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 10 |
|
elicc4 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 11 |
5 2 3 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 12 |
9 11
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |