| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltnelicc.a |
|- ( ph -> A e. RR ) |
| 2 |
|
ltnelicc.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
ltnelicc.c |
|- ( ph -> C e. RR* ) |
| 4 |
|
ltnelicc.clta |
|- ( ph -> C < A ) |
| 5 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 6 |
|
xrltnle |
|- ( ( C e. RR* /\ A e. RR* ) -> ( C < A <-> -. A <_ C ) ) |
| 7 |
3 5 6
|
syl2anc |
|- ( ph -> ( C < A <-> -. A <_ C ) ) |
| 8 |
4 7
|
mpbid |
|- ( ph -> -. A <_ C ) |
| 9 |
8
|
intnanrd |
|- ( ph -> -. ( A <_ C /\ C <_ B ) ) |
| 10 |
|
elicc4 |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| 11 |
5 2 3 10
|
syl3anc |
|- ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| 12 |
9 11
|
mtbird |
|- ( ph -> -. C e. ( A [,] B ) ) |