| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnel.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
ltrnel.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
ltrnel.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
ltrnel.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
| 7 |
1 2 3 4
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 8 |
7
|
3adant2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
| 9 |
1 2 3 4
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≤ 𝑊 ) ) |
| 10 |
5 6 8 9
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ≤ 𝑊 ) ) |