| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lubeldm2d.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
lubeldm2d.l |
⊢ ( 𝜑 → ≤ = ( le ‘ 𝐾 ) ) |
| 3 |
|
lubeldm2d.u |
⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐾 ) ) |
| 4 |
|
lubeldm2d.p |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) ) |
| 5 |
|
lubeldm2d.k |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 7 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 8 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
| 9 |
|
biid |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 10 |
6 7 8 9 5
|
lubeldm2 |
⊢ ( 𝜑 → ( 𝑆 ∈ dom ( lub ‘ 𝐾 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 11 |
3
|
dmeqd |
⊢ ( 𝜑 → dom 𝑈 = dom ( lub ‘ 𝐾 ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ 𝑆 ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 13 |
1
|
sseq2d |
⊢ ( 𝜑 → ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ 𝐾 ) ) ) |
| 14 |
2
|
breqd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 16 |
2
|
breqd |
⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 18 |
2
|
breqd |
⊢ ( 𝜑 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 19 |
17 18
|
imbi12d |
⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 20 |
1 19
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 21 |
15 20
|
anbi12d |
⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 23 |
4 22
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 24 |
23
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 25 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ) |
| 26 |
25
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 27 |
24 26
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 28 |
27
|
rexbidv2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 29 |
13 28
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ 𝑆 𝑦 ( le ‘ 𝐾 ) 𝑧 → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) ) |
| 30 |
10 12 29
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝑈 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) ) |