| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
| 3 |
|
mapdh.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
mapdh.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
mapdh.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
mapdh.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 7 |
|
mapdh.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 8 |
|
mapdhc.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 9 |
|
mapdh.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 10 |
|
mapdh.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
mapdh.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 12 |
|
mapdh.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 13 |
|
mapdh.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 14 |
|
mapdh.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 15 |
|
mapdhc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 16 |
|
mapdh.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 17 |
|
mapdhcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 18 |
|
mapdh.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 19 |
|
mapdh.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
| 20 |
|
mapdh6k.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 21 |
|
mapdh6k.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 22 |
|
mapdh6k.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 23 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 24 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝐹 ∈ 𝐷 ) |
| 25 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 26 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑌 = 0 ) |
| 28 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑍 ∈ 𝑉 ) |
| 29 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 23 24 25 26 18 19 27 28 29
|
mapdh6bN |
⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |
| 31 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 32 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝐹 ∈ 𝐷 ) |
| 33 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 34 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 35 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝑌 ∈ 𝑉 ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → 𝑍 = 0 ) |
| 37 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 31 32 33 34 18 19 35 36 37
|
mapdh6cN |
⊢ ( ( 𝜑 ∧ 𝑍 = 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |
| 39 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 40 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝐹 ∈ 𝐷 ) |
| 41 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 42 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 43 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 44 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑌 ∈ 𝑉 ) |
| 45 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑌 ≠ 0 ) |
| 46 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 ) ) |
| 47 |
44 45 46
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 48 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ∈ 𝑉 ) |
| 49 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ≠ 0 ) |
| 50 |
|
eldifsn |
⊢ ( 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑍 ∈ 𝑉 ∧ 𝑍 ≠ 0 ) ) |
| 51 |
48 49 50
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 39 40 41 42 18 19 43 47 51
|
mapdh6jN |
⊢ ( ( 𝜑 ∧ ( 𝑌 ≠ 0 ∧ 𝑍 ≠ 0 ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |
| 53 |
30 38 52
|
pm2.61da2ne |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |