Metamath Proof Explorer


Theorem mapdh75fN

Description: Part (7) of Baer p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh75.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh75.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh75.v 𝑉 = ( Base ‘ 𝑈 )
mapdh75.s = ( -g𝑈 )
mapdh75.o 0 = ( 0g𝑈 )
mapdh75.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh75.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh75.d 𝐷 = ( Base ‘ 𝐶 )
mapdh75.r 𝑅 = ( -g𝐶 )
mapdh75.q 𝑄 = ( 0g𝐶 )
mapdh75.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh75.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh75.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh75.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh75.f ( 𝜑𝐹𝐷 )
mapdh75.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh75a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
mapdh75d.b ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐸 )
mapdh75d.vw ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
mapdh75d.un ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
mapdh75d.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh75d.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh75d.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion mapdh75fN ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑍 , 𝐸 , 𝑌 ⟩ ) = 𝐺 )

Proof

Step Hyp Ref Expression
1 mapdh75.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh75.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh75.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh75.s = ( -g𝑈 )
5 mapdh75.o 0 = ( 0g𝑈 )
6 mapdh75.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh75.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh75.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh75.r 𝑅 = ( -g𝐶 )
10 mapdh75.q 𝑄 = ( 0g𝐶 )
11 mapdh75.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh75.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh75.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh75.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh75.f ( 𝜑𝐹𝐷 )
16 mapdh75.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh75a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
18 mapdh75d.b ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) = 𝐸 )
19 mapdh75d.vw ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
20 mapdh75d.un ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
21 mapdh75d.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
22 mapdh75d.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
23 mapdh75d.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
24 22 eldifad ( 𝜑𝑌𝑉 )
25 1 2 14 dvhlvec ( 𝜑𝑈 ∈ LVec )
26 21 eldifad ( 𝜑𝑋𝑉 )
27 23 eldifad ( 𝜑𝑍𝑉 )
28 3 6 25 26 24 27 20 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) )
29 28 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
30 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 21 24 29 mapdhcl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 )
31 17 30 eqeltrrd ( 𝜑𝐺𝐷 )
32 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 21 22 31 29 mapdheq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )
33 17 32 mpbid ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) )
34 33 simpld ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 mapdh75d ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑍 ⟩ ) = 𝐸 )
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 31 34 35 19 22 23 mapdh75e ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑍 , 𝐸 , 𝑌 ⟩ ) = 𝐺 )