Metamath Proof Explorer


Theorem maprnin

Description: Restricting the range of the mapping operator. (Contributed by Thierry Arnoux, 30-Aug-2017)

Ref Expression
Hypotheses maprnin.1 𝐴 ∈ V
maprnin.2 𝐵 ∈ V
Assertion maprnin ( ( 𝐵𝐶 ) ↑m 𝐴 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ran 𝑓𝐶 }

Proof

Step Hyp Ref Expression
1 maprnin.1 𝐴 ∈ V
2 maprnin.2 𝐵 ∈ V
3 ffn ( 𝑓 : 𝐴𝐵𝑓 Fn 𝐴 )
4 df-f ( 𝑓 : 𝐴𝐶 ↔ ( 𝑓 Fn 𝐴 ∧ ran 𝑓𝐶 ) )
5 4 baibr ( 𝑓 Fn 𝐴 → ( ran 𝑓𝐶𝑓 : 𝐴𝐶 ) )
6 3 5 syl ( 𝑓 : 𝐴𝐵 → ( ran 𝑓𝐶𝑓 : 𝐴𝐶 ) )
7 6 pm5.32i ( ( 𝑓 : 𝐴𝐵 ∧ ran 𝑓𝐶 ) ↔ ( 𝑓 : 𝐴𝐵𝑓 : 𝐴𝐶 ) )
8 2 1 elmap ( 𝑓 ∈ ( 𝐵m 𝐴 ) ↔ 𝑓 : 𝐴𝐵 )
9 8 anbi1i ( ( 𝑓 ∈ ( 𝐵m 𝐴 ) ∧ ran 𝑓𝐶 ) ↔ ( 𝑓 : 𝐴𝐵 ∧ ran 𝑓𝐶 ) )
10 fin ( 𝑓 : 𝐴 ⟶ ( 𝐵𝐶 ) ↔ ( 𝑓 : 𝐴𝐵𝑓 : 𝐴𝐶 ) )
11 7 9 10 3bitr4ri ( 𝑓 : 𝐴 ⟶ ( 𝐵𝐶 ) ↔ ( 𝑓 ∈ ( 𝐵m 𝐴 ) ∧ ran 𝑓𝐶 ) )
12 11 abbii { 𝑓𝑓 : 𝐴 ⟶ ( 𝐵𝐶 ) } = { 𝑓 ∣ ( 𝑓 ∈ ( 𝐵m 𝐴 ) ∧ ran 𝑓𝐶 ) }
13 2 inex1 ( 𝐵𝐶 ) ∈ V
14 13 1 mapval ( ( 𝐵𝐶 ) ↑m 𝐴 ) = { 𝑓𝑓 : 𝐴 ⟶ ( 𝐵𝐶 ) }
15 df-rab { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ran 𝑓𝐶 } = { 𝑓 ∣ ( 𝑓 ∈ ( 𝐵m 𝐴 ) ∧ ran 𝑓𝐶 ) }
16 12 14 15 3eqtr4i ( ( 𝐵𝐶 ) ↑m 𝐴 ) = { 𝑓 ∈ ( 𝐵m 𝐴 ) ∣ ran 𝑓𝐶 }