Step |
Hyp |
Ref |
Expression |
1 |
|
maxidln0.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
maxidln0.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
maxidln0.3 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
4 |
|
maxidln0.4 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
5 |
|
maxidlidl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑀 ∈ ( Idl ‘ 𝑅 ) ) |
6 |
1 3
|
idl0cl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( Idl ‘ 𝑅 ) ) → 𝑍 ∈ 𝑀 ) |
7 |
5 6
|
syldan |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑍 ∈ 𝑀 ) |
8 |
2 4
|
maxidln1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → ¬ 𝑈 ∈ 𝑀 ) |
9 |
|
nelneq |
⊢ ( ( 𝑍 ∈ 𝑀 ∧ ¬ 𝑈 ∈ 𝑀 ) → ¬ 𝑍 = 𝑈 ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → ¬ 𝑍 = 𝑈 ) |
11 |
10
|
neqned |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑍 ≠ 𝑈 ) |
12 |
11
|
necomd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑀 ∈ ( MaxIdl ‘ 𝑅 ) ) → 𝑈 ≠ 𝑍 ) |