| Step | Hyp | Ref | Expression | 
						
							| 1 |  | maxidln0.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | maxidln0.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 3 |  | maxidln0.3 | ⊢ 𝑍  =  ( GId ‘ 𝐺 ) | 
						
							| 4 |  | maxidln0.4 | ⊢ 𝑈  =  ( GId ‘ 𝐻 ) | 
						
							| 5 |  | maxidlidl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  𝑀  ∈  ( Idl ‘ 𝑅 ) ) | 
						
							| 6 | 1 3 | idl0cl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( Idl ‘ 𝑅 ) )  →  𝑍  ∈  𝑀 ) | 
						
							| 7 | 5 6 | syldan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  𝑍  ∈  𝑀 ) | 
						
							| 8 | 2 4 | maxidln1 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  ¬  𝑈  ∈  𝑀 ) | 
						
							| 9 |  | nelneq | ⊢ ( ( 𝑍  ∈  𝑀  ∧  ¬  𝑈  ∈  𝑀 )  →  ¬  𝑍  =  𝑈 ) | 
						
							| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  ¬  𝑍  =  𝑈 ) | 
						
							| 11 | 10 | neqned | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  𝑍  ≠  𝑈 ) | 
						
							| 12 | 11 | necomd | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑀  ∈  ( MaxIdl ‘ 𝑅 ) )  →  𝑈  ≠  𝑍 ) |