| Step |
Hyp |
Ref |
Expression |
| 1 |
|
maxidln0.1 |
|- G = ( 1st ` R ) |
| 2 |
|
maxidln0.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
maxidln0.3 |
|- Z = ( GId ` G ) |
| 4 |
|
maxidln0.4 |
|- U = ( GId ` H ) |
| 5 |
|
maxidlidl |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M e. ( Idl ` R ) ) |
| 6 |
1 3
|
idl0cl |
|- ( ( R e. RingOps /\ M e. ( Idl ` R ) ) -> Z e. M ) |
| 7 |
5 6
|
syldan |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> Z e. M ) |
| 8 |
2 4
|
maxidln1 |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> -. U e. M ) |
| 9 |
|
nelneq |
|- ( ( Z e. M /\ -. U e. M ) -> -. Z = U ) |
| 10 |
7 8 9
|
syl2anc |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> -. Z = U ) |
| 11 |
10
|
neqned |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> Z =/= U ) |
| 12 |
11
|
necomd |
|- ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> U =/= Z ) |