| Step | Hyp | Ref | Expression | 
						
							| 1 |  | maxidln0.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | maxidln0.2 |  |-  H = ( 2nd ` R ) | 
						
							| 3 |  | maxidln0.3 |  |-  Z = ( GId ` G ) | 
						
							| 4 |  | maxidln0.4 |  |-  U = ( GId ` H ) | 
						
							| 5 |  | maxidlidl |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> M e. ( Idl ` R ) ) | 
						
							| 6 | 1 3 | idl0cl |  |-  ( ( R e. RingOps /\ M e. ( Idl ` R ) ) -> Z e. M ) | 
						
							| 7 | 5 6 | syldan |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> Z e. M ) | 
						
							| 8 | 2 4 | maxidln1 |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> -. U e. M ) | 
						
							| 9 |  | nelneq |  |-  ( ( Z e. M /\ -. U e. M ) -> -. Z = U ) | 
						
							| 10 | 7 8 9 | syl2anc |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> -. Z = U ) | 
						
							| 11 | 10 | neqned |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> Z =/= U ) | 
						
							| 12 | 11 | necomd |  |-  ( ( R e. RingOps /\ M e. ( MaxIdl ` R ) ) -> U =/= Z ) |