Metamath Proof Explorer


Theorem maxs2

Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion maxs2 ( ( 𝐴 No 𝐵 No ) → 𝐵 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) )

Proof

Step Hyp Ref Expression
1 slerflex ( 𝐵 No 𝐵 ≤s 𝐵 )
2 1 ad2antlr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵 ) → 𝐵 ≤s 𝐵 )
3 iftrue ( 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) = 𝐵 )
4 3 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵 ) → if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) = 𝐵 )
5 2 4 breqtrrd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵 ) → 𝐵 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) )
6 sletric ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) )
7 6 orcanai ( ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵 ) → 𝐵 ≤s 𝐴 )
8 iffalse ( ¬ 𝐴 ≤s 𝐵 → if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) = 𝐴 )
9 8 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵 ) → if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) = 𝐴 )
10 7 9 breqtrrd ( ( ( 𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵 ) → 𝐵 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) )
11 5 10 pm2.61dan ( ( 𝐴 No 𝐵 No ) → 𝐵 ≤s if ( 𝐴 ≤s 𝐵 , 𝐵 , 𝐴 ) )