Metamath Proof Explorer


Theorem maxs2

Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion maxs2 ANoBNoBsifAsBBA

Proof

Step Hyp Ref Expression
1 slerflex BNoBsB
2 1 ad2antlr ANoBNoAsBBsB
3 iftrue AsBifAsBBA=B
4 3 adantl ANoBNoAsBifAsBBA=B
5 2 4 breqtrrd ANoBNoAsBBsifAsBBA
6 sletric ANoBNoAsBBsA
7 6 orcanai ANoBNo¬AsBBsA
8 iffalse ¬AsBifAsBBA=A
9 8 adantl ANoBNo¬AsBifAsBBA=A
10 7 9 breqtrrd ANoBNo¬AsBBsifAsBBA
11 5 10 pm2.61dan ANoBNoBsifAsBBA