Metamath Proof Explorer


Theorem mdandysum2p2e4

Description: CONTRADICTION PROVED AT 1 + 1 = 2 . Luckily Mario Carneiro did a successful version of his own.

See Mario's Relevant Work: Half adder and full adder in propositional calculus.

Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses.

Note: Values that when added would exceed a 4bit value are not supported.

Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2'. 0010 would be '4'.

How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit.

( et <-> F. ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit.

In mdandysum2p2e4, one might imagine what jth or jta could be then do the math with their truths. Also limited to the restriction jth, jta are having opposite truths equivalent to the stated truth constants. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses mdandysum2p2e4.1 ( jth ↔ ⊥ )
mdandysum2p2e4.2 ( jta ↔ ⊤ )
mdandysum2p2e4.a ( 𝜑 ↔ ( 𝜃𝜏 ) )
mdandysum2p2e4.b ( 𝜓 ↔ ( 𝜂𝜁 ) )
mdandysum2p2e4.c ( 𝜒 ↔ ( 𝜎𝜌 ) )
mdandysum2p2e4.d ( 𝜃jth )
mdandysum2p2e4.e ( 𝜏jth )
mdandysum2p2e4.f ( 𝜂jta )
mdandysum2p2e4.g ( 𝜁jta )
mdandysum2p2e4.h ( 𝜎jth )
mdandysum2p2e4.i ( 𝜌jth )
mdandysum2p2e4.j ( 𝜇jth )
mdandysum2p2e4.k ( 𝜆jth )
mdandysum2p2e4.l ( 𝜅 ↔ ( ( 𝜃𝜏 ) ⊻ ( 𝜃𝜏 ) ) )
mdandysum2p2e4.m ( jph ↔ ( ( 𝜂𝜁 ) ∨ 𝜑 ) )
mdandysum2p2e4.n ( jps ↔ ( ( 𝜎𝜌 ) ∨ 𝜓 ) )
mdandysum2p2e4.o ( jch ↔ ( ( 𝜇𝜆 ) ∨ 𝜒 ) )
Assertion mdandysum2p2e4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ↔ ( 𝜃𝜏 ) ) ∧ ( 𝜓 ↔ ( 𝜂𝜁 ) ) ) ∧ ( 𝜒 ↔ ( 𝜎𝜌 ) ) ) ∧ ( 𝜃 ↔ ⊥ ) ) ∧ ( 𝜏 ↔ ⊥ ) ) ∧ ( 𝜂 ↔ ⊤ ) ) ∧ ( 𝜁 ↔ ⊤ ) ) ∧ ( 𝜎 ↔ ⊥ ) ) ∧ ( 𝜌 ↔ ⊥ ) ) ∧ ( 𝜇 ↔ ⊥ ) ) ∧ ( 𝜆 ↔ ⊥ ) ) ∧ ( 𝜅 ↔ ( ( 𝜃𝜏 ) ⊻ ( 𝜃𝜏 ) ) ) ) ∧ ( jph ↔ ( ( 𝜂𝜁 ) ∨ 𝜑 ) ) ) ∧ ( jps ↔ ( ( 𝜎𝜌 ) ∨ 𝜓 ) ) ) ∧ ( jch ↔ ( ( 𝜇𝜆 ) ∨ 𝜒 ) ) ) → ( ( ( ( 𝜅 ↔ ⊥ ) ∧ ( jph ↔ ⊥ ) ) ∧ ( jps ↔ ⊤ ) ) ∧ ( jch ↔ ⊥ ) ) )

Proof

Step Hyp Ref Expression
1 mdandysum2p2e4.1 ( jth ↔ ⊥ )
2 mdandysum2p2e4.2 ( jta ↔ ⊤ )
3 mdandysum2p2e4.a ( 𝜑 ↔ ( 𝜃𝜏 ) )
4 mdandysum2p2e4.b ( 𝜓 ↔ ( 𝜂𝜁 ) )
5 mdandysum2p2e4.c ( 𝜒 ↔ ( 𝜎𝜌 ) )
6 mdandysum2p2e4.d ( 𝜃jth )
7 mdandysum2p2e4.e ( 𝜏jth )
8 mdandysum2p2e4.f ( 𝜂jta )
9 mdandysum2p2e4.g ( 𝜁jta )
10 mdandysum2p2e4.h ( 𝜎jth )
11 mdandysum2p2e4.i ( 𝜌jth )
12 mdandysum2p2e4.j ( 𝜇jth )
13 mdandysum2p2e4.k ( 𝜆jth )
14 mdandysum2p2e4.l ( 𝜅 ↔ ( ( 𝜃𝜏 ) ⊻ ( 𝜃𝜏 ) ) )
15 mdandysum2p2e4.m ( jph ↔ ( ( 𝜂𝜁 ) ∨ 𝜑 ) )
16 mdandysum2p2e4.n ( jps ↔ ( ( 𝜎𝜌 ) ∨ 𝜓 ) )
17 mdandysum2p2e4.o ( jch ↔ ( ( 𝜇𝜆 ) ∨ 𝜒 ) )
18 6 1 aisbbisfaisf ( 𝜃 ↔ ⊥ )
19 7 1 aisbbisfaisf ( 𝜏 ↔ ⊥ )
20 8 2 aiffbbtat ( 𝜂 ↔ ⊤ )
21 9 2 aiffbbtat ( 𝜁 ↔ ⊤ )
22 10 1 aisbbisfaisf ( 𝜎 ↔ ⊥ )
23 11 1 aisbbisfaisf ( 𝜌 ↔ ⊥ )
24 12 1 aisbbisfaisf ( 𝜇 ↔ ⊥ )
25 13 1 aisbbisfaisf ( 𝜆 ↔ ⊥ )
26 3 4 5 18 19 20 21 22 23 24 25 14 15 16 17 dandysum2p2e4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ↔ ( 𝜃𝜏 ) ) ∧ ( 𝜓 ↔ ( 𝜂𝜁 ) ) ) ∧ ( 𝜒 ↔ ( 𝜎𝜌 ) ) ) ∧ ( 𝜃 ↔ ⊥ ) ) ∧ ( 𝜏 ↔ ⊥ ) ) ∧ ( 𝜂 ↔ ⊤ ) ) ∧ ( 𝜁 ↔ ⊤ ) ) ∧ ( 𝜎 ↔ ⊥ ) ) ∧ ( 𝜌 ↔ ⊥ ) ) ∧ ( 𝜇 ↔ ⊥ ) ) ∧ ( 𝜆 ↔ ⊥ ) ) ∧ ( 𝜅 ↔ ( ( 𝜃𝜏 ) ⊻ ( 𝜃𝜏 ) ) ) ) ∧ ( jph ↔ ( ( 𝜂𝜁 ) ∨ 𝜑 ) ) ) ∧ ( jps ↔ ( ( 𝜎𝜌 ) ∨ 𝜓 ) ) ) ∧ ( jch ↔ ( ( 𝜇𝜆 ) ∨ 𝜒 ) ) ) → ( ( ( ( 𝜅 ↔ ⊥ ) ∧ ( jph ↔ ⊥ ) ) ∧ ( jps ↔ ⊤ ) ) ∧ ( jch ↔ ⊥ ) ) )