Metamath Proof Explorer


Theorem meetdm2

Description: The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024)

Ref Expression
Hypotheses joindm2.b 𝐵 = ( Base ‘ 𝐾 )
joindm2.k ( 𝜑𝐾𝑉 )
meetdm2.g 𝐺 = ( glb ‘ 𝐾 )
meetdm2.m = ( meet ‘ 𝐾 )
Assertion meetdm2 ( 𝜑 → ( dom = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥𝐵𝑦𝐵 { 𝑥 , 𝑦 } ∈ dom 𝐺 ) )

Proof

Step Hyp Ref Expression
1 joindm2.b 𝐵 = ( Base ‘ 𝐾 )
2 joindm2.k ( 𝜑𝐾𝑉 )
3 meetdm2.g 𝐺 = ( glb ‘ 𝐾 )
4 meetdm2.m = ( meet ‘ 𝐾 )
5 1 4 2 meetdmss ( 𝜑 → dom ⊆ ( 𝐵 × 𝐵 ) )
6 eqss ( dom = ( 𝐵 × 𝐵 ) ↔ ( dom ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝐵 × 𝐵 ) ⊆ dom ) )
7 6 baib ( dom ⊆ ( 𝐵 × 𝐵 ) → ( dom = ( 𝐵 × 𝐵 ) ↔ ( 𝐵 × 𝐵 ) ⊆ dom ) )
8 5 7 syl ( 𝜑 → ( dom = ( 𝐵 × 𝐵 ) ↔ ( 𝐵 × 𝐵 ) ⊆ dom ) )
9 relxp Rel ( 𝐵 × 𝐵 )
10 ssrel ( Rel ( 𝐵 × 𝐵 ) → ( ( 𝐵 × 𝐵 ) ⊆ dom ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom ) ) )
11 9 10 mp1i ( 𝜑 → ( ( 𝐵 × 𝐵 ) ⊆ dom ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom ) ) )
12 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥𝐵𝑦𝐵 ) )
13 12 a1i ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥𝐵𝑦𝐵 ) ) )
14 vex 𝑥 ∈ V
15 14 a1i ( 𝜑𝑥 ∈ V )
16 vex 𝑦 ∈ V
17 16 a1i ( 𝜑𝑦 ∈ V )
18 3 4 2 15 17 meetdef ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ dom ↔ { 𝑥 , 𝑦 } ∈ dom 𝐺 ) )
19 13 18 imbi12d ( 𝜑 → ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom ) ↔ ( ( 𝑥𝐵𝑦𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝐺 ) ) )
20 19 2albidv ( 𝜑 → ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom ) ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝐺 ) ) )
21 r2al ( ∀ 𝑥𝐵𝑦𝐵 { 𝑥 , 𝑦 } ∈ dom 𝐺 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐵𝑦𝐵 ) → { 𝑥 , 𝑦 } ∈ dom 𝐺 ) )
22 20 21 bitr4di ( 𝜑 → ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ dom ) ↔ ∀ 𝑥𝐵𝑦𝐵 { 𝑥 , 𝑦 } ∈ dom 𝐺 ) )
23 8 11 22 3bitrd ( 𝜑 → ( dom = ( 𝐵 × 𝐵 ) ↔ ∀ 𝑥𝐵𝑦𝐵 { 𝑥 , 𝑦 } ∈ dom 𝐺 ) )