| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt34.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt34.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt34.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt34.4 | ⊢ 𝐷  =  ( 𝑤  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑤  =  𝐼 ,  𝑤 ,  if ( 𝑤  <  𝐼 ,  ( ( 𝑤  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑤  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑤  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑤  −  𝐼 ) ,  1 ,  0 ) ) ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) )  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) )  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) ) | 
						
							| 7 | 1 2 3 5 6 | metakunt14 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  ∧  ◡ ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) )  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) ) ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 9 |  | f1ocnv | ⊢ ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  →  ◡ ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ◡ ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 11 | 7 | simprd | ⊢ ( 𝜑  →  ◡ ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) )  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) ) ) | 
						
							| 12 | 11 | f1oeq1d | ⊢ ( 𝜑  →  ( ◡ ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  ↔  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) | 
						
							| 13 | 10 12 | mpbid | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 15 | 1 2 3 14 | metakunt25 | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 16 |  | f1oco | ⊢ ( ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  ∧  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )  →  ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  ∘  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 17 | 15 8 16 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  ∘  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 18 |  | f1oco | ⊢ ( ( ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  ∧  ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  ∘  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )  →  ( ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) )  ∘  ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  ∘  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 19 | 13 17 18 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) )  ∘  ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  ∘  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 20 | 1 2 3 5 14 6 4 | metakunt33 | ⊢ ( 𝜑  →  ( ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) )  ∘  ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  ∘  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) )  =  𝐷 ) | 
						
							| 21 | 20 | f1oeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝐼 ,  if ( 𝑧  <  𝐼 ,  𝑧 ,  ( 𝑧  +  1 ) ) ) )  ∘  ( ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝑀 ,  if ( 𝑦  <  𝐼 ,  ( 𝑦  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑦  +  ( 1  −  𝐼 ) ) ) ) )  ∘  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  ↔  𝐷 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) | 
						
							| 22 | 19 21 | mpbid | ⊢ ( 𝜑  →  𝐷 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |