Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt34.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt34.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt34.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt34.4 |
⊢ 𝐷 = ( 𝑤 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑤 = 𝐼 , 𝑤 , if ( 𝑤 < 𝐼 , ( ( 𝑤 + ( 𝑀 − 𝐼 ) ) + if ( 𝐼 ≤ ( 𝑤 + ( 𝑀 − 𝐼 ) ) , 1 , 0 ) ) , ( ( 𝑤 − 𝐼 ) + if ( 𝐼 ≤ ( 𝑤 − 𝐼 ) , 1 , 0 ) ) ) ) ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) |
6 |
|
eqid |
⊢ ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) = ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) |
7 |
1 2 3 5 6
|
metakunt14 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ∧ ◡ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) = ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
9 |
|
f1ocnv |
⊢ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → ◡ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ◡ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
11 |
7
|
simprd |
⊢ ( 𝜑 → ◡ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) = ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) ) |
12 |
11
|
f1oeq1d |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) |
13 |
10 12
|
mpbid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
14 |
|
eqid |
⊢ ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) |
15 |
1 2 3 14
|
metakunt25 |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
16 |
|
f1oco |
⊢ ( ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ∧ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) → ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) ∘ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
17 |
15 8 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) ∘ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
18 |
|
f1oco |
⊢ ( ( ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ∧ ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) ∘ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) → ( ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) ∘ ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) ∘ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
19 |
13 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) ∘ ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) ∘ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
20 |
1 2 3 5 14 6 4
|
metakunt33 |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) ∘ ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) ∘ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) ) = 𝐷 ) |
21 |
20
|
f1oeq1d |
⊢ ( 𝜑 → ( ( ( 𝑧 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑧 = 𝑀 , 𝐼 , if ( 𝑧 < 𝐼 , 𝑧 , ( 𝑧 + 1 ) ) ) ) ∘ ( ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝑀 , if ( 𝑦 < 𝐼 , ( 𝑦 + ( 𝑀 − 𝐼 ) ) , ( 𝑦 + ( 1 − 𝐼 ) ) ) ) ) ∘ ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ 𝐷 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) |
22 |
19 21
|
mpbid |
⊢ ( 𝜑 → 𝐷 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |