| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt33.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt33.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt33.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt33.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt33.5 | ⊢ 𝐵  =  ( 𝑧  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑧  =  𝑀 ,  𝑀 ,  if ( 𝑧  <  𝐼 ,  ( 𝑧  +  ( 𝑀  −  𝐼 ) ) ,  ( 𝑧  +  ( 1  −  𝐼 ) ) ) ) ) | 
						
							| 6 |  | metakunt33.6 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 7 |  | metakunt33.7 | ⊢ 𝐷  =  ( 𝑤  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑤  =  𝐼 ,  𝑤 ,  if ( 𝑤  <  𝐼 ,  ( ( 𝑤  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑤  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑤  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑤  −  𝐼 ) ,  1 ,  0 ) ) ) ) ) | 
						
							| 8 | 1 2 3 6 | metakunt2 | ⊢ ( 𝜑  →  𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 9 | 1 2 3 5 | metakunt25 | ⊢ ( 𝜑  →  𝐵 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 10 |  | f1of | ⊢ ( 𝐵 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  →  𝐵 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  𝐵 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 12 | 1 2 3 4 | metakunt1 | ⊢ ( 𝜑  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 13 | 11 12 | fcod | ⊢ ( 𝜑  →  ( 𝐵  ∘  𝐴 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 14 | 8 13 | fcod | ⊢ ( 𝜑  →  ( 𝐶  ∘  ( 𝐵  ∘  𝐴 ) ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 15 | 14 | ffnd | ⊢ ( 𝜑  →  ( 𝐶  ∘  ( 𝐵  ∘  𝐴 ) )  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 17 |  | elfzelz | ⊢ ( 𝑤  ∈  ( 1 ... 𝑀 )  →  𝑤  ∈  ℤ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  𝑤  ∈  ℤ ) | 
						
							| 19 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 21 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ∈  ℤ ) | 
						
							| 23 | 20 22 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑀  −  𝐼 )  ∈  ℤ ) | 
						
							| 24 | 18 23 | zaddcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑤  +  ( 𝑀  −  𝐼 ) )  ∈  ℤ ) | 
						
							| 25 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  1  ∈  ℤ ) | 
						
							| 26 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  0  ∈  ℤ ) | 
						
							| 27 | 25 26 | ifcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝐼  ≤  ( 𝑤  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 )  ∈  ℤ ) | 
						
							| 28 | 24 27 | zaddcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑤  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑤  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) )  ∈  ℤ ) | 
						
							| 29 | 18 22 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑤  −  𝐼 )  ∈  ℤ ) | 
						
							| 30 | 25 26 | ifcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝐼  ≤  ( 𝑤  −  𝐼 ) ,  1 ,  0 )  ∈  ℤ ) | 
						
							| 31 | 29 30 | zaddcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑤  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑤  −  𝐼 ) ,  1 ,  0 ) )  ∈  ℤ ) | 
						
							| 32 | 28 31 | ifcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑤  <  𝐼 ,  ( ( 𝑤  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑤  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑤  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑤  −  𝐼 ) ,  1 ,  0 ) ) )  ∈  ℤ ) | 
						
							| 33 | 18 32 | ifcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑤  =  𝐼 ,  𝑤 ,  if ( 𝑤  <  𝐼 ,  ( ( 𝑤  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑤  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑤  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑤  −  𝐼 ) ,  1 ,  0 ) ) ) )  ∈  ℤ ) | 
						
							| 34 | 16 33 7 | fnmptd | ⊢ ( 𝜑  →  𝐷  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 35 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵  ∘  𝐴 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝑎  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 37 | 35 36 | fvco3d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶  ∘  ( 𝐵  ∘  𝐴 ) ) ‘ 𝑎 )  =  ( 𝐶 ‘ ( ( 𝐵  ∘  𝐴 ) ‘ 𝑎 ) ) ) | 
						
							| 38 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 39 | 38 36 | fvco3d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐵  ∘  𝐴 ) ‘ 𝑎 )  =  ( 𝐵 ‘ ( 𝐴 ‘ 𝑎 ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶 ‘ ( ( 𝐵  ∘  𝐴 ) ‘ 𝑎 ) )  =  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑎 ) ) ) ) | 
						
							| 41 | 37 40 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶  ∘  ( 𝐵  ∘  𝐴 ) ) ‘ 𝑎 )  =  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑎 ) ) ) ) | 
						
							| 42 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 43 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ∈  ℕ ) | 
						
							| 44 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ≤  𝑀 ) | 
						
							| 45 |  | eqid | ⊢ if ( 𝐼  ≤  ( 𝑎  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 )  =  if ( 𝐼  ≤  ( 𝑎  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) | 
						
							| 46 |  | eqid | ⊢ if ( 𝐼  ≤  ( 𝑎  −  𝐼 ) ,  1 ,  0 )  =  if ( 𝐼  ≤  ( 𝑎  −  𝐼 ) ,  1 ,  0 ) | 
						
							| 47 |  | eqid | ⊢ if ( 𝑎  =  𝐼 ,  𝑎 ,  if ( 𝑎  <  𝐼 ,  ( ( 𝑎  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑎  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑎  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑎  −  𝐼 ) ,  1 ,  0 ) ) ) )  =  if ( 𝑎  =  𝐼 ,  𝑎 ,  if ( 𝑎  <  𝐼 ,  ( ( 𝑎  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑎  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑎  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑎  −  𝐼 ) ,  1 ,  0 ) ) ) ) | 
						
							| 48 | 42 43 44 36 4 5 6 45 46 47 | metakunt31 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑎 ) ) )  =  if ( 𝑎  =  𝐼 ,  𝑎 ,  if ( 𝑎  <  𝐼 ,  ( ( 𝑎  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑎  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑎  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑎  −  𝐼 ) ,  1 ,  0 ) ) ) ) ) | 
						
							| 49 | 42 43 44 36 7 45 46 47 | metakunt32 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐷 ‘ 𝑎 )  =  if ( 𝑎  =  𝐼 ,  𝑎 ,  if ( 𝑎  <  𝐼 ,  ( ( 𝑎  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑎  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑎  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑎  −  𝐼 ) ,  1 ,  0 ) ) ) ) ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑎  =  𝐼 ,  𝑎 ,  if ( 𝑎  <  𝐼 ,  ( ( 𝑎  +  ( 𝑀  −  𝐼 ) )  +  if ( 𝐼  ≤  ( 𝑎  +  ( 𝑀  −  𝐼 ) ) ,  1 ,  0 ) ) ,  ( ( 𝑎  −  𝐼 )  +  if ( 𝐼  ≤  ( 𝑎  −  𝐼 ) ,  1 ,  0 ) ) ) )  =  ( 𝐷 ‘ 𝑎 ) ) | 
						
							| 51 | 48 50 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶 ‘ ( 𝐵 ‘ ( 𝐴 ‘ 𝑎 ) ) )  =  ( 𝐷 ‘ 𝑎 ) ) | 
						
							| 52 | 41 51 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐶  ∘  ( 𝐵  ∘  𝐴 ) ) ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑎 ) ) | 
						
							| 53 | 15 34 52 | eqfnfvd | ⊢ ( 𝜑  →  ( 𝐶  ∘  ( 𝐵  ∘  𝐴 ) )  =  𝐷 ) |