| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt1.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt1.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt1.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt1.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑀  =  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  →  ( 𝑀  ∈  ( 1 ... 𝑀 )  ↔  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 6 |  | eleq1 | ⊢ ( if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  →  ( if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  ∈  ( 1 ... 𝑀 )  ↔  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 7 |  | 1zzd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  𝑥  =  𝐼 )  →  1  ∈  ℤ ) | 
						
							| 8 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  𝑥  =  𝐼 )  →  𝑀  ∈  ℤ ) | 
						
							| 10 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  𝑥  =  𝐼 )  →  𝑀  ∈  ℕ ) | 
						
							| 11 | 10 | nnge1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  𝑥  =  𝐼 )  →  1  ≤  𝑀 ) | 
						
							| 12 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  𝑥  =  𝐼 )  →  𝑀  ∈  ℝ ) | 
						
							| 14 | 13 | leidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  𝑥  =  𝐼 )  →  𝑀  ≤  𝑀 ) | 
						
							| 15 | 7 9 9 11 14 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  𝑥  =  𝐼 )  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑥  =  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  →  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↔  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 17 |  | eleq1 | ⊢ ( ( 𝑥  −  1 )  =  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  →  ( ( 𝑥  −  1 )  ∈  ( 1 ... 𝑀 )  ↔  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 18 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑥  =  𝐼 )  ∧  𝑥  <  𝐼 )  →  𝑥  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 19 |  | pm4.56 | ⊢ ( ( ¬  𝑥  =  𝐼  ∧  ¬  𝑥  <  𝐼 )  ↔  ¬  ( 𝑥  =  𝐼  ∨  𝑥  <  𝐼 ) ) | 
						
							| 20 | 19 | anbi2i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  ( ¬  𝑥  =  𝐼  ∧  ¬  𝑥  <  𝐼 ) )  ↔  ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  ( 𝑥  =  𝐼  ∨  𝑥  <  𝐼 ) ) ) | 
						
							| 21 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ∈  ℝ ) | 
						
							| 23 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  →  𝑥  ∈  ℕ ) | 
						
							| 24 | 23 | nnred | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  →  𝑥  ∈  ℝ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 26 | 22 25 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐼  ∈  ℝ  ∧  𝑥  ∈  ℝ ) ) | 
						
							| 27 |  | axlttri | ⊢ ( ( 𝐼  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝐼  <  𝑥  ↔  ¬  ( 𝐼  =  𝑥  ∨  𝑥  <  𝐼 ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐼  <  𝑥  ↔  ¬  ( 𝐼  =  𝑥  ∨  𝑥  <  𝐼 ) ) ) | 
						
							| 29 |  | eqcom | ⊢ ( 𝐼  =  𝑥  ↔  𝑥  =  𝐼 ) | 
						
							| 30 | 29 | orbi1i | ⊢ ( ( 𝐼  =  𝑥  ∨  𝑥  <  𝐼 )  ↔  ( 𝑥  =  𝐼  ∨  𝑥  <  𝐼 ) ) | 
						
							| 31 | 30 | notbii | ⊢ ( ¬  ( 𝐼  =  𝑥  ∨  𝑥  <  𝐼 )  ↔  ¬  ( 𝑥  =  𝐼  ∨  𝑥  <  𝐼 ) ) | 
						
							| 32 | 28 31 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐼  <  𝑥  ↔  ¬  ( 𝑥  =  𝐼  ∨  𝑥  <  𝐼 ) ) ) | 
						
							| 33 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  1  ∈  ℤ ) | 
						
							| 34 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  𝑀  ∈  ℤ ) | 
						
							| 35 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  𝑥  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 36 | 35 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  𝑥  ∈  ℤ ) | 
						
							| 37 | 36 33 | zsubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  ( 𝑥  −  1 )  ∈  ℤ ) | 
						
							| 38 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  1  ∈  ℝ ) | 
						
							| 39 | 22 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  𝐼  ∈  ℝ ) | 
						
							| 40 | 35 24 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  𝑥  ∈  ℝ ) | 
						
							| 41 | 2 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝐼 ) | 
						
							| 42 | 41 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  1  ≤  𝐼 ) | 
						
							| 43 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  𝐼  <  𝑥 ) | 
						
							| 44 | 38 39 40 42 43 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  1  <  𝑥 ) | 
						
							| 45 | 33 36 | zltlem1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  ( 1  <  𝑥  ↔  1  ≤  ( 𝑥  −  1 ) ) ) | 
						
							| 46 | 44 45 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  1  ≤  ( 𝑥  −  1 ) ) | 
						
							| 47 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  1  ∈  ℝ ) | 
						
							| 48 | 25 47 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  −  1 )  ∈  ℝ ) | 
						
							| 49 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 50 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 51 | 50 | a1i | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  →  0  ≤  1 ) | 
						
							| 52 |  | 1red | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  →  1  ∈  ℝ ) | 
						
							| 53 | 24 52 | subge02d | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  →  ( 0  ≤  1  ↔  ( 𝑥  −  1 )  ≤  𝑥 ) ) | 
						
							| 54 | 51 53 | mpbid | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  →  ( 𝑥  −  1 )  ≤  𝑥 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  −  1 )  ≤  𝑥 ) | 
						
							| 56 |  | elfzle2 | ⊢ ( 𝑥  ∈  ( 1 ... 𝑀 )  →  𝑥  ≤  𝑀 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  𝑥  ≤  𝑀 ) | 
						
							| 58 | 48 25 49 55 57 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑥  −  1 )  ≤  𝑀 ) | 
						
							| 59 | 58 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  ( 𝑥  −  1 )  ≤  𝑀 ) | 
						
							| 60 | 33 34 37 46 59 | elfzd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝐼  <  𝑥 )  →  ( 𝑥  −  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 61 | 60 | 3expia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐼  <  𝑥  →  ( 𝑥  −  1 )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 62 | 32 61 | sylbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  ( ¬  ( 𝑥  =  𝐼  ∨  𝑥  <  𝐼 )  →  ( 𝑥  −  1 )  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 63 | 62 | imp | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  ( 𝑥  =  𝐼  ∨  𝑥  <  𝐼 ) )  →  ( 𝑥  −  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 64 | 20 63 | sylbi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  ( ¬  𝑥  =  𝐼  ∧  ¬  𝑥  <  𝐼 ) )  →  ( 𝑥  −  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 65 | 64 | anassrs | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑥  =  𝐼 )  ∧  ¬  𝑥  <  𝐼 )  →  ( 𝑥  −  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 66 | 16 17 18 65 | ifbothda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  ∧  ¬  𝑥  =  𝐼 )  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 67 | 5 6 15 66 | ifbothda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 ... 𝑀 ) )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 68 | 67 4 | fmptd | ⊢ ( 𝜑  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |