Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt1.1 |
|
2 |
|
metakunt1.2 |
|
3 |
|
metakunt1.3 |
|
4 |
|
metakunt1.4 |
|
5 |
|
eleq1 |
|
6 |
|
eleq1 |
|
7 |
|
1zzd |
|
8 |
1
|
nnzd |
|
9 |
8
|
ad2antrr |
|
10 |
1
|
ad2antrr |
|
11 |
10
|
nnge1d |
|
12 |
1
|
nnred |
|
13 |
12
|
ad2antrr |
|
14 |
13
|
leidd |
|
15 |
7 9 9 11 14
|
elfzd |
|
16 |
|
eleq1 |
|
17 |
|
eleq1 |
|
18 |
|
simpllr |
|
19 |
|
pm4.56 |
|
20 |
19
|
anbi2i |
|
21 |
2
|
nnred |
|
22 |
21
|
adantr |
|
23 |
|
elfznn |
|
24 |
23
|
nnred |
|
25 |
24
|
adantl |
|
26 |
22 25
|
jca |
|
27 |
|
axlttri |
|
28 |
26 27
|
syl |
|
29 |
|
eqcom |
|
30 |
29
|
orbi1i |
|
31 |
30
|
notbii |
|
32 |
28 31
|
bitrdi |
|
33 |
|
1zzd |
|
34 |
8
|
3ad2ant1 |
|
35 |
|
simp2 |
|
36 |
35
|
elfzelzd |
|
37 |
36 33
|
zsubcld |
|
38 |
|
1red |
|
39 |
22
|
3adant3 |
|
40 |
35 24
|
syl |
|
41 |
2
|
nnge1d |
|
42 |
41
|
3ad2ant1 |
|
43 |
|
simp3 |
|
44 |
38 39 40 42 43
|
lelttrd |
|
45 |
33 36
|
zltlem1d |
|
46 |
44 45
|
mpbid |
|
47 |
|
1red |
|
48 |
25 47
|
resubcld |
|
49 |
12
|
adantr |
|
50 |
|
0le1 |
|
51 |
50
|
a1i |
|
52 |
|
1red |
|
53 |
24 52
|
subge02d |
|
54 |
51 53
|
mpbid |
|
55 |
54
|
adantl |
|
56 |
|
elfzle2 |
|
57 |
56
|
adantl |
|
58 |
48 25 49 55 57
|
letrd |
|
59 |
58
|
3adant3 |
|
60 |
33 34 37 46 59
|
elfzd |
|
61 |
60
|
3expia |
|
62 |
32 61
|
sylbird |
|
63 |
62
|
imp |
|
64 |
20 63
|
sylbi |
|
65 |
64
|
anassrs |
|
66 |
16 17 18 65
|
ifbothda |
|
67 |
5 6 15 66
|
ifbothda |
|
68 |
67 4
|
fmptd |
|