Metamath Proof Explorer


Theorem metakunt1

Description: A is an endomapping. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses metakunt1.1 φ M
metakunt1.2 φ I
metakunt1.3 φ I M
metakunt1.4 A = x 1 M if x = I M if x < I x x 1
Assertion metakunt1 φ A : 1 M 1 M

Proof

Step Hyp Ref Expression
1 metakunt1.1 φ M
2 metakunt1.2 φ I
3 metakunt1.3 φ I M
4 metakunt1.4 A = x 1 M if x = I M if x < I x x 1
5 eleq1 M = if x = I M if x < I x x 1 M 1 M if x = I M if x < I x x 1 1 M
6 eleq1 if x < I x x 1 = if x = I M if x < I x x 1 if x < I x x 1 1 M if x = I M if x < I x x 1 1 M
7 1zzd φ x 1 M x = I 1
8 1 nnzd φ M
9 8 ad2antrr φ x 1 M x = I M
10 1 ad2antrr φ x 1 M x = I M
11 10 nnge1d φ x 1 M x = I 1 M
12 1 nnred φ M
13 12 ad2antrr φ x 1 M x = I M
14 13 leidd φ x 1 M x = I M M
15 7 9 9 11 14 elfzd φ x 1 M x = I M 1 M
16 eleq1 x = if x < I x x 1 x 1 M if x < I x x 1 1 M
17 eleq1 x 1 = if x < I x x 1 x 1 1 M if x < I x x 1 1 M
18 simpllr φ x 1 M ¬ x = I x < I x 1 M
19 pm4.56 ¬ x = I ¬ x < I ¬ x = I x < I
20 19 anbi2i φ x 1 M ¬ x = I ¬ x < I φ x 1 M ¬ x = I x < I
21 2 nnred φ I
22 21 adantr φ x 1 M I
23 elfznn x 1 M x
24 23 nnred x 1 M x
25 24 adantl φ x 1 M x
26 22 25 jca φ x 1 M I x
27 axlttri I x I < x ¬ I = x x < I
28 26 27 syl φ x 1 M I < x ¬ I = x x < I
29 eqcom I = x x = I
30 29 orbi1i I = x x < I x = I x < I
31 30 notbii ¬ I = x x < I ¬ x = I x < I
32 28 31 bitrdi φ x 1 M I < x ¬ x = I x < I
33 1zzd φ x 1 M I < x 1
34 8 3ad2ant1 φ x 1 M I < x M
35 simp2 φ x 1 M I < x x 1 M
36 35 elfzelzd φ x 1 M I < x x
37 36 33 zsubcld φ x 1 M I < x x 1
38 1red φ x 1 M I < x 1
39 22 3adant3 φ x 1 M I < x I
40 35 24 syl φ x 1 M I < x x
41 2 nnge1d φ 1 I
42 41 3ad2ant1 φ x 1 M I < x 1 I
43 simp3 φ x 1 M I < x I < x
44 38 39 40 42 43 lelttrd φ x 1 M I < x 1 < x
45 33 36 zltlem1d φ x 1 M I < x 1 < x 1 x 1
46 44 45 mpbid φ x 1 M I < x 1 x 1
47 1red φ x 1 M 1
48 25 47 resubcld φ x 1 M x 1
49 12 adantr φ x 1 M M
50 0le1 0 1
51 50 a1i x 1 M 0 1
52 1red x 1 M 1
53 24 52 subge02d x 1 M 0 1 x 1 x
54 51 53 mpbid x 1 M x 1 x
55 54 adantl φ x 1 M x 1 x
56 elfzle2 x 1 M x M
57 56 adantl φ x 1 M x M
58 48 25 49 55 57 letrd φ x 1 M x 1 M
59 58 3adant3 φ x 1 M I < x x 1 M
60 33 34 37 46 59 elfzd φ x 1 M I < x x 1 1 M
61 60 3expia φ x 1 M I < x x 1 1 M
62 32 61 sylbird φ x 1 M ¬ x = I x < I x 1 1 M
63 62 imp φ x 1 M ¬ x = I x < I x 1 1 M
64 20 63 sylbi φ x 1 M ¬ x = I ¬ x < I x 1 1 M
65 64 anassrs φ x 1 M ¬ x = I ¬ x < I x 1 1 M
66 16 17 18 65 ifbothda φ x 1 M ¬ x = I if x < I x x 1 1 M
67 5 6 15 66 ifbothda φ x 1 M if x = I M if x < I x x 1 1 M
68 67 4 fmptd φ A : 1 M 1 M