| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt1.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt1.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt1.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt1.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | eleq1 |  |-  ( M = if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) -> ( M e. ( 1 ... M ) <-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) e. ( 1 ... M ) ) ) | 
						
							| 6 |  | eleq1 |  |-  ( if ( x < I , x , ( x - 1 ) ) = if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) -> ( if ( x < I , x , ( x - 1 ) ) e. ( 1 ... M ) <-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) e. ( 1 ... M ) ) ) | 
						
							| 7 |  | 1zzd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = I ) -> 1 e. ZZ ) | 
						
							| 8 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 9 | 8 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = I ) -> M e. ZZ ) | 
						
							| 10 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = I ) -> M e. NN ) | 
						
							| 11 | 10 | nnge1d |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = I ) -> 1 <_ M ) | 
						
							| 12 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = I ) -> M e. RR ) | 
						
							| 14 | 13 | leidd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = I ) -> M <_ M ) | 
						
							| 15 | 7 9 9 11 14 | elfzd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = I ) -> M e. ( 1 ... M ) ) | 
						
							| 16 |  | eleq1 |  |-  ( x = if ( x < I , x , ( x - 1 ) ) -> ( x e. ( 1 ... M ) <-> if ( x < I , x , ( x - 1 ) ) e. ( 1 ... M ) ) ) | 
						
							| 17 |  | eleq1 |  |-  ( ( x - 1 ) = if ( x < I , x , ( x - 1 ) ) -> ( ( x - 1 ) e. ( 1 ... M ) <-> if ( x < I , x , ( x - 1 ) ) e. ( 1 ... M ) ) ) | 
						
							| 18 |  | simpllr |  |-  ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = I ) /\ x < I ) -> x e. ( 1 ... M ) ) | 
						
							| 19 |  | pm4.56 |  |-  ( ( -. x = I /\ -. x < I ) <-> -. ( x = I \/ x < I ) ) | 
						
							| 20 | 19 | anbi2i |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = I /\ -. x < I ) ) <-> ( ( ph /\ x e. ( 1 ... M ) ) /\ -. ( x = I \/ x < I ) ) ) | 
						
							| 21 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> I e. RR ) | 
						
							| 23 |  | elfznn |  |-  ( x e. ( 1 ... M ) -> x e. NN ) | 
						
							| 24 | 23 | nnred |  |-  ( x e. ( 1 ... M ) -> x e. RR ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> x e. RR ) | 
						
							| 26 | 22 25 | jca |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( I e. RR /\ x e. RR ) ) | 
						
							| 27 |  | axlttri |  |-  ( ( I e. RR /\ x e. RR ) -> ( I < x <-> -. ( I = x \/ x < I ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( I < x <-> -. ( I = x \/ x < I ) ) ) | 
						
							| 29 |  | eqcom |  |-  ( I = x <-> x = I ) | 
						
							| 30 | 29 | orbi1i |  |-  ( ( I = x \/ x < I ) <-> ( x = I \/ x < I ) ) | 
						
							| 31 | 30 | notbii |  |-  ( -. ( I = x \/ x < I ) <-> -. ( x = I \/ x < I ) ) | 
						
							| 32 | 28 31 | bitrdi |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( I < x <-> -. ( x = I \/ x < I ) ) ) | 
						
							| 33 |  | 1zzd |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> 1 e. ZZ ) | 
						
							| 34 | 8 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> M e. ZZ ) | 
						
							| 35 |  | simp2 |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> x e. ( 1 ... M ) ) | 
						
							| 36 | 35 | elfzelzd |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> x e. ZZ ) | 
						
							| 37 | 36 33 | zsubcld |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> ( x - 1 ) e. ZZ ) | 
						
							| 38 |  | 1red |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> 1 e. RR ) | 
						
							| 39 | 22 | 3adant3 |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> I e. RR ) | 
						
							| 40 | 35 24 | syl |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> x e. RR ) | 
						
							| 41 | 2 | nnge1d |  |-  ( ph -> 1 <_ I ) | 
						
							| 42 | 41 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> 1 <_ I ) | 
						
							| 43 |  | simp3 |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> I < x ) | 
						
							| 44 | 38 39 40 42 43 | lelttrd |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> 1 < x ) | 
						
							| 45 | 33 36 | zltlem1d |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> ( 1 < x <-> 1 <_ ( x - 1 ) ) ) | 
						
							| 46 | 44 45 | mpbid |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> 1 <_ ( x - 1 ) ) | 
						
							| 47 |  | 1red |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> 1 e. RR ) | 
						
							| 48 | 25 47 | resubcld |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( x - 1 ) e. RR ) | 
						
							| 49 | 12 | adantr |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> M e. RR ) | 
						
							| 50 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 51 | 50 | a1i |  |-  ( x e. ( 1 ... M ) -> 0 <_ 1 ) | 
						
							| 52 |  | 1red |  |-  ( x e. ( 1 ... M ) -> 1 e. RR ) | 
						
							| 53 | 24 52 | subge02d |  |-  ( x e. ( 1 ... M ) -> ( 0 <_ 1 <-> ( x - 1 ) <_ x ) ) | 
						
							| 54 | 51 53 | mpbid |  |-  ( x e. ( 1 ... M ) -> ( x - 1 ) <_ x ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( x - 1 ) <_ x ) | 
						
							| 56 |  | elfzle2 |  |-  ( x e. ( 1 ... M ) -> x <_ M ) | 
						
							| 57 | 56 | adantl |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> x <_ M ) | 
						
							| 58 | 48 25 49 55 57 | letrd |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( x - 1 ) <_ M ) | 
						
							| 59 | 58 | 3adant3 |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> ( x - 1 ) <_ M ) | 
						
							| 60 | 33 34 37 46 59 | elfzd |  |-  ( ( ph /\ x e. ( 1 ... M ) /\ I < x ) -> ( x - 1 ) e. ( 1 ... M ) ) | 
						
							| 61 | 60 | 3expia |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( I < x -> ( x - 1 ) e. ( 1 ... M ) ) ) | 
						
							| 62 | 32 61 | sylbird |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( -. ( x = I \/ x < I ) -> ( x - 1 ) e. ( 1 ... M ) ) ) | 
						
							| 63 | 62 | imp |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. ( x = I \/ x < I ) ) -> ( x - 1 ) e. ( 1 ... M ) ) | 
						
							| 64 | 20 63 | sylbi |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = I /\ -. x < I ) ) -> ( x - 1 ) e. ( 1 ... M ) ) | 
						
							| 65 | 64 | anassrs |  |-  ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = I ) /\ -. x < I ) -> ( x - 1 ) e. ( 1 ... M ) ) | 
						
							| 66 | 16 17 18 65 | ifbothda |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = I ) -> if ( x < I , x , ( x - 1 ) ) e. ( 1 ... M ) ) | 
						
							| 67 | 5 6 15 66 | ifbothda |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) e. ( 1 ... M ) ) | 
						
							| 68 | 67 4 | fmptd |  |-  ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) |