Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt2.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt2.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt2.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt2.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) ) |
5 |
|
eleq1 |
|- ( I = if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) -> ( I e. ( 1 ... M ) <-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) e. ( 1 ... M ) ) ) |
6 |
|
eleq1 |
|- ( if ( x < I , x , ( x + 1 ) ) = if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) -> ( if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) <-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) e. ( 1 ... M ) ) ) |
7 |
|
1zzd |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> 1 e. ZZ ) |
8 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
9 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> M e. ZZ ) |
10 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
11 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> I e. ZZ ) |
12 |
2
|
nnge1d |
|- ( ph -> 1 <_ I ) |
13 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> 1 <_ I ) |
14 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> I <_ M ) |
15 |
7 9 11 13 14
|
elfzd |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> I e. ( 1 ... M ) ) |
16 |
|
eleq1 |
|- ( x = if ( x < I , x , ( x + 1 ) ) -> ( x e. ( 1 ... M ) <-> if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) ) ) |
17 |
|
eleq1 |
|- ( ( x + 1 ) = if ( x < I , x , ( x + 1 ) ) -> ( ( x + 1 ) e. ( 1 ... M ) <-> if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) ) ) |
18 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ x < I ) -> x e. ( 1 ... M ) ) |
19 |
|
1zzd |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> 1 e. ZZ ) |
20 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> M e. ZZ ) |
21 |
|
elfznn |
|- ( x e. ( 1 ... M ) -> x e. NN ) |
22 |
21
|
nnzd |
|- ( x e. ( 1 ... M ) -> x e. ZZ ) |
23 |
22
|
ad2antlr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> x e. ZZ ) |
24 |
23
|
peano2zd |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x + 1 ) e. ZZ ) |
25 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
26 |
|
0red |
|- ( x e. ( 1 ... M ) -> 0 e. RR ) |
27 |
21
|
nnred |
|- ( x e. ( 1 ... M ) -> x e. RR ) |
28 |
|
1red |
|- ( x e. ( 1 ... M ) -> 1 e. RR ) |
29 |
21
|
nnnn0d |
|- ( x e. ( 1 ... M ) -> x e. NN0 ) |
30 |
29
|
nn0ge0d |
|- ( x e. ( 1 ... M ) -> 0 <_ x ) |
31 |
26 27 28 30
|
leadd1dd |
|- ( x e. ( 1 ... M ) -> ( 0 + 1 ) <_ ( x + 1 ) ) |
32 |
25 31
|
eqbrtrrid |
|- ( x e. ( 1 ... M ) -> 1 <_ ( x + 1 ) ) |
33 |
32
|
ad2antlr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> 1 <_ ( x + 1 ) ) |
34 |
|
simplr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> x e. ( 1 ... M ) ) |
35 |
|
neqne |
|- ( -. x = M -> x =/= M ) |
36 |
35
|
adantl |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> x =/= M ) |
37 |
34 36
|
fzne2d |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> x < M ) |
38 |
37
|
adantrr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> x < M ) |
39 |
22
|
adantl |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> x e. ZZ ) |
40 |
8
|
adantr |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> M e. ZZ ) |
41 |
39 40
|
zltp1led |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> ( x < M <-> ( x + 1 ) <_ M ) ) |
42 |
41
|
adantr |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x < M <-> ( x + 1 ) <_ M ) ) |
43 |
38 42
|
mpbid |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x + 1 ) <_ M ) |
44 |
19 20 24 33 43
|
elfzd |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x + 1 ) e. ( 1 ... M ) ) |
45 |
44
|
anassrs |
|- ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ -. x < I ) -> ( x + 1 ) e. ( 1 ... M ) ) |
46 |
16 17 18 45
|
ifbothda |
|- ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) ) |
47 |
5 6 15 46
|
ifbothda |
|- ( ( ph /\ x e. ( 1 ... M ) ) -> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) e. ( 1 ... M ) ) |
48 |
47 4
|
fmptd |
|- ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) |