| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt2.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt2.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt2.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt2.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) ) | 
						
							| 5 |  | eleq1 |  |-  ( I = if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) -> ( I e. ( 1 ... M ) <-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) e. ( 1 ... M ) ) ) | 
						
							| 6 |  | eleq1 |  |-  ( if ( x < I , x , ( x + 1 ) ) = if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) -> ( if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) <-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) e. ( 1 ... M ) ) ) | 
						
							| 7 |  | 1zzd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> 1 e. ZZ ) | 
						
							| 8 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 9 | 8 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> M e. ZZ ) | 
						
							| 10 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> I e. ZZ ) | 
						
							| 12 | 2 | nnge1d |  |-  ( ph -> 1 <_ I ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> 1 <_ I ) | 
						
							| 14 | 3 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> I <_ M ) | 
						
							| 15 | 7 9 11 13 14 | elfzd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ x = M ) -> I e. ( 1 ... M ) ) | 
						
							| 16 |  | eleq1 |  |-  ( x = if ( x < I , x , ( x + 1 ) ) -> ( x e. ( 1 ... M ) <-> if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) ) ) | 
						
							| 17 |  | eleq1 |  |-  ( ( x + 1 ) = if ( x < I , x , ( x + 1 ) ) -> ( ( x + 1 ) e. ( 1 ... M ) <-> if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) ) ) | 
						
							| 18 |  | simpllr |  |-  ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ x < I ) -> x e. ( 1 ... M ) ) | 
						
							| 19 |  | 1zzd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> 1 e. ZZ ) | 
						
							| 20 | 8 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> M e. ZZ ) | 
						
							| 21 |  | elfznn |  |-  ( x e. ( 1 ... M ) -> x e. NN ) | 
						
							| 22 | 21 | nnzd |  |-  ( x e. ( 1 ... M ) -> x e. ZZ ) | 
						
							| 23 | 22 | ad2antlr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> x e. ZZ ) | 
						
							| 24 | 23 | peano2zd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x + 1 ) e. ZZ ) | 
						
							| 25 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 26 |  | 0red |  |-  ( x e. ( 1 ... M ) -> 0 e. RR ) | 
						
							| 27 | 21 | nnred |  |-  ( x e. ( 1 ... M ) -> x e. RR ) | 
						
							| 28 |  | 1red |  |-  ( x e. ( 1 ... M ) -> 1 e. RR ) | 
						
							| 29 | 21 | nnnn0d |  |-  ( x e. ( 1 ... M ) -> x e. NN0 ) | 
						
							| 30 | 29 | nn0ge0d |  |-  ( x e. ( 1 ... M ) -> 0 <_ x ) | 
						
							| 31 | 26 27 28 30 | leadd1dd |  |-  ( x e. ( 1 ... M ) -> ( 0 + 1 ) <_ ( x + 1 ) ) | 
						
							| 32 | 25 31 | eqbrtrrid |  |-  ( x e. ( 1 ... M ) -> 1 <_ ( x + 1 ) ) | 
						
							| 33 | 32 | ad2antlr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> 1 <_ ( x + 1 ) ) | 
						
							| 34 |  | simplr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> x e. ( 1 ... M ) ) | 
						
							| 35 |  | neqne |  |-  ( -. x = M -> x =/= M ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> x =/= M ) | 
						
							| 37 | 34 36 | fzne2d |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> x < M ) | 
						
							| 38 | 37 | adantrr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> x < M ) | 
						
							| 39 | 22 | adantl |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> x e. ZZ ) | 
						
							| 40 | 8 | adantr |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> M e. ZZ ) | 
						
							| 41 | 39 40 | zltp1led |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> ( x < M <-> ( x + 1 ) <_ M ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x < M <-> ( x + 1 ) <_ M ) ) | 
						
							| 43 | 38 42 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x + 1 ) <_ M ) | 
						
							| 44 | 19 20 24 33 43 | elfzd |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ ( -. x = M /\ -. x < I ) ) -> ( x + 1 ) e. ( 1 ... M ) ) | 
						
							| 45 | 44 | anassrs |  |-  ( ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) /\ -. x < I ) -> ( x + 1 ) e. ( 1 ... M ) ) | 
						
							| 46 | 16 17 18 45 | ifbothda |  |-  ( ( ( ph /\ x e. ( 1 ... M ) ) /\ -. x = M ) -> if ( x < I , x , ( x + 1 ) ) e. ( 1 ... M ) ) | 
						
							| 47 | 5 6 15 46 | ifbothda |  |-  ( ( ph /\ x e. ( 1 ... M ) ) -> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) e. ( 1 ... M ) ) | 
						
							| 48 | 47 4 | fmptd |  |-  ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) |