| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt3.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt3.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt3.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt3.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt3.5 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 6 | 4 | a1i |  |-  ( ph -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 7 |  | eqeq1 |  |-  ( x = X -> ( x = I <-> X = I ) ) | 
						
							| 8 |  | breq1 |  |-  ( x = X -> ( x < I <-> X < I ) ) | 
						
							| 9 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 10 |  | oveq1 |  |-  ( x = X -> ( x - 1 ) = ( X - 1 ) ) | 
						
							| 11 | 8 9 10 | ifbieq12d |  |-  ( x = X -> if ( x < I , x , ( x - 1 ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 12 | 7 11 | ifbieq2d |  |-  ( x = X -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) | 
						
							| 14 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 15 | 5 | elfzelzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 16 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 17 | 15 16 | zsubcld |  |-  ( ph -> ( X - 1 ) e. ZZ ) | 
						
							| 18 | 15 17 | ifcld |  |-  ( ph -> if ( X < I , X , ( X - 1 ) ) e. ZZ ) | 
						
							| 19 | 14 18 | ifcld |  |-  ( ph -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) e. ZZ ) | 
						
							| 20 | 6 13 5 19 | fvmptd |  |-  ( ph -> ( A ` X ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) |