| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt4.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt4.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt4.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt4.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) ) | 
						
							| 5 |  | metakunt4.5 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 6 | 4 | a1i |  |-  ( ph -> A = ( x e. ( 1 ... M ) |-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) ) ) | 
						
							| 7 |  | eqeq1 |  |-  ( x = X -> ( x = M <-> X = M ) ) | 
						
							| 8 |  | breq1 |  |-  ( x = X -> ( x < I <-> X < I ) ) | 
						
							| 9 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 10 |  | oveq1 |  |-  ( x = X -> ( x + 1 ) = ( X + 1 ) ) | 
						
							| 11 | 8 9 10 | ifbieq12d |  |-  ( x = X -> if ( x < I , x , ( x + 1 ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 12 | 7 11 | ifbieq2d |  |-  ( x = X -> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ x = X ) -> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 14 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 15 | 5 | elfzelzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 16 | 15 | peano2zd |  |-  ( ph -> ( X + 1 ) e. ZZ ) | 
						
							| 17 | 15 16 | ifcld |  |-  ( ph -> if ( X < I , X , ( X + 1 ) ) e. ZZ ) | 
						
							| 18 | 14 17 | ifcld |  |-  ( ph -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) e. ZZ ) | 
						
							| 19 | 6 13 5 18 | fvmptd |  |-  ( ph -> ( A ` X ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |