Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt4.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt4.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt4.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt4.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) ) |
5 |
|
metakunt4.5 |
|- ( ph -> X e. ( 1 ... M ) ) |
6 |
4
|
a1i |
|- ( ph -> A = ( x e. ( 1 ... M ) |-> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) ) ) |
7 |
|
eqeq1 |
|- ( x = X -> ( x = M <-> X = M ) ) |
8 |
|
breq1 |
|- ( x = X -> ( x < I <-> X < I ) ) |
9 |
|
id |
|- ( x = X -> x = X ) |
10 |
|
oveq1 |
|- ( x = X -> ( x + 1 ) = ( X + 1 ) ) |
11 |
8 9 10
|
ifbieq12d |
|- ( x = X -> if ( x < I , x , ( x + 1 ) ) = if ( X < I , X , ( X + 1 ) ) ) |
12 |
7 11
|
ifbieq2d |
|- ( x = X -> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |
13 |
12
|
adantl |
|- ( ( ph /\ x = X ) -> if ( x = M , I , if ( x < I , x , ( x + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |
14 |
2
|
nnzd |
|- ( ph -> I e. ZZ ) |
15 |
5
|
elfzelzd |
|- ( ph -> X e. ZZ ) |
16 |
15
|
peano2zd |
|- ( ph -> ( X + 1 ) e. ZZ ) |
17 |
15 16
|
ifcld |
|- ( ph -> if ( X < I , X , ( X + 1 ) ) e. ZZ ) |
18 |
14 17
|
ifcld |
|- ( ph -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) e. ZZ ) |
19 |
6 13 5 18
|
fvmptd |
|- ( ph -> ( A ` X ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |