| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt5.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt5.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt5.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt5.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt5.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt5.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 | 5 | a1i |  |-  ( ( ph /\ X = I ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( X = I -> ( A ` X ) = ( A ` I ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ X = I ) -> ( A ` X ) = ( A ` I ) ) | 
						
							| 10 | 4 | a1i |  |-  ( ph -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ x = I ) -> x = I ) | 
						
							| 12 | 11 | iftrued |  |-  ( ( ph /\ x = I ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = M ) | 
						
							| 13 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 14 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 15 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 16 | 2 | nnge1d |  |-  ( ph -> 1 <_ I ) | 
						
							| 17 | 13 14 15 16 3 | elfzd |  |-  ( ph -> I e. ( 1 ... M ) ) | 
						
							| 18 | 10 12 17 1 | fvmptd |  |-  ( ph -> ( A ` I ) = M ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ X = I ) -> ( A ` I ) = M ) | 
						
							| 20 | 9 19 | eqtrd |  |-  ( ( ph /\ X = I ) -> ( A ` X ) = M ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( ( ph /\ X = I ) -> ( y = ( A ` X ) <-> y = M ) ) | 
						
							| 22 |  | iftrue |  |-  ( y = M -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = I ) | 
						
							| 23 | 22 | 3ad2ant3 |  |-  ( ( ph /\ X = I /\ y = M ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = I ) | 
						
							| 24 |  | simp2 |  |-  ( ( ph /\ X = I /\ y = M ) -> X = I ) | 
						
							| 25 | 23 24 | eqtr4d |  |-  ( ( ph /\ X = I /\ y = M ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) | 
						
							| 26 | 25 | 3expia |  |-  ( ( ph /\ X = I ) -> ( y = M -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) ) | 
						
							| 27 | 21 26 | sylbid |  |-  ( ( ph /\ X = I ) -> ( y = ( A ` X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( ( ph /\ X = I ) /\ y = ( A ` X ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) | 
						
							| 29 | 1 2 3 4 | metakunt1 |  |-  ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ X = I ) -> A : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 31 | 6 | adantr |  |-  ( ( ph /\ X = I ) -> X e. ( 1 ... M ) ) | 
						
							| 32 | 30 31 | ffvelcdmd |  |-  ( ( ph /\ X = I ) -> ( A ` X ) e. ( 1 ... M ) ) | 
						
							| 33 | 7 28 32 31 | fvmptd |  |-  ( ( ph /\ X = I ) -> ( C ` ( A ` X ) ) = X ) |