| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt5.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt5.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt5.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt5.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt5.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt5.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑋  =  𝐼  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝐴 ‘ 𝐼 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝐴 ‘ 𝐼 ) ) | 
						
							| 10 | 4 | a1i | ⊢ ( 𝜑  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐼 )  →  𝑥  =  𝐼 ) | 
						
							| 12 | 11 | iftrued | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐼 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑀 ) | 
						
							| 13 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 14 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 15 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 16 | 2 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝐼 ) | 
						
							| 17 | 13 14 15 16 3 | elfzd | ⊢ ( 𝜑  →  𝐼  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 18 | 10 12 17 1 | fvmptd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐼 )  =  𝑀 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝐴 ‘ 𝐼 )  =  𝑀 ) | 
						
							| 20 | 9 19 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝐴 ‘ 𝑋 )  =  𝑀 ) | 
						
							| 21 | 20 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  ↔  𝑦  =  𝑀 ) ) | 
						
							| 22 |  | iftrue | ⊢ ( 𝑦  =  𝑀  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝐼 ) | 
						
							| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼  ∧  𝑦  =  𝑀 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝐼 ) | 
						
							| 24 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼  ∧  𝑦  =  𝑀 )  →  𝑋  =  𝐼 ) | 
						
							| 25 | 23 24 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼  ∧  𝑦  =  𝑀 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) | 
						
							| 26 | 25 | 3expia | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝑦  =  𝑀  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) ) | 
						
							| 27 | 21 26 | sylbid | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( 𝜑  ∧  𝑋  =  𝐼 )  ∧  𝑦  =  ( 𝐴 ‘ 𝑋 ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) | 
						
							| 29 | 1 2 3 4 | metakunt1 | ⊢ ( 𝜑  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 31 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 32 | 30 31 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 33 | 7 28 32 31 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) |