| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt6.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt6.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt6.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt6.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt6.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt6.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 8 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 9 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝐼  ↔  𝑋  =  𝐼 ) ) | 
						
							| 11 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  −  1 )  =  ( 𝑋  −  1 ) ) | 
						
							| 13 | 11 9 12 | ifbieq12d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 14 | 10 13 | ifbieq2d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) ) | 
						
							| 16 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 18 | 17 | nnred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ∈  ℝ ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  <  𝐼 ) | 
						
							| 21 | 19 20 | ltned | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ≠  𝐼 ) | 
						
							| 22 |  | df-ne | ⊢ ( 𝑋  ≠  𝐼  ↔  ¬  𝑋  =  𝐼 ) | 
						
							| 23 | 21 22 | sylib | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ¬  𝑋  =  𝐼 ) | 
						
							| 24 |  | iffalse | ⊢ ( ¬  𝑋  =  𝐼  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 26 |  | iftrue | ⊢ ( 𝑋  <  𝐼  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  =  𝑋 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  =  𝑋 ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  𝑋 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑥  =  𝑋 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  𝑋 ) | 
						
							| 30 | 15 29 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑋 ) | 
						
							| 31 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 32 | 8 30 31 31 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐴 ‘ 𝑋 )  =  𝑋 ) | 
						
							| 33 |  | eqcom | ⊢ ( ( 𝐴 ‘ 𝑋 )  =  𝑋  ↔  𝑋  =  ( 𝐴 ‘ 𝑋 ) ) | 
						
							| 34 | 33 | imbi2i | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐴 ‘ 𝑋 )  =  𝑋 )  ↔  ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  =  ( 𝐴 ‘ 𝑋 ) ) ) | 
						
							| 35 | 32 34 | mpbi | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  =  ( 𝐴 ‘ 𝑋 ) ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝑦  =  𝑋  ↔  𝑦  =  ( 𝐴 ‘ 𝑋 ) ) ) | 
						
							| 37 |  | eqeq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  =  𝑀  ↔  𝑋  =  𝑀 ) ) | 
						
							| 38 |  | breq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 39 |  | id | ⊢ ( 𝑦  =  𝑋  →  𝑦  =  𝑋 ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  +  1 )  =  ( 𝑋  +  1 ) ) | 
						
							| 41 | 38 39 40 | ifbieq12d | ⊢ ( 𝑦  =  𝑋  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) | 
						
							| 42 | 37 41 | ifbieq2d | ⊢ ( 𝑦  =  𝑋  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑦  =  𝑋 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) ) | 
						
							| 44 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐼  ∈  ℝ ) | 
						
							| 46 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑀  ∈  ℝ ) | 
						
							| 48 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐼  ≤  𝑀 ) | 
						
							| 49 | 19 45 47 20 48 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  <  𝑀 ) | 
						
							| 50 | 19 49 | ltned | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ≠  𝑀 ) | 
						
							| 51 | 50 | neneqd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ¬  𝑋  =  𝑀 ) | 
						
							| 52 |  | iffalse | ⊢ ( ¬  𝑋  =  𝑀  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) | 
						
							| 54 |  | iftrue | ⊢ ( 𝑋  <  𝐼  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) )  =  𝑋 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) )  =  𝑋 ) | 
						
							| 56 | 53 55 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  𝑋 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑦  =  𝑋 )  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  𝑋 ) | 
						
							| 58 | 43 57 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑦  =  𝑋 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) | 
						
							| 59 | 58 | ex | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝑦  =  𝑋  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) ) | 
						
							| 60 | 36 59 | sylbird | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) ) | 
						
							| 61 | 60 | imp | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑦  =  ( 𝐴 ‘ 𝑋 ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) | 
						
							| 62 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑀  ∈  ℕ ) | 
						
							| 63 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐼  ∈  ℕ ) | 
						
							| 64 | 62 63 48 4 | metakunt1 | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 65 | 64 31 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 66 | 7 61 65 31 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) |