| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt6.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt6.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt6.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt6.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt6.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt6.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 | 5 | a1i |  |-  ( ( ph /\ X < I ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) | 
						
							| 8 | 4 | a1i |  |-  ( ( ph /\ X < I ) -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 9 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( x = X -> ( x = I <-> X = I ) ) | 
						
							| 11 |  | breq1 |  |-  ( x = X -> ( x < I <-> X < I ) ) | 
						
							| 12 |  | oveq1 |  |-  ( x = X -> ( x - 1 ) = ( X - 1 ) ) | 
						
							| 13 | 11 9 12 | ifbieq12d |  |-  ( x = X -> if ( x < I , x , ( x - 1 ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 14 | 10 13 | ifbieq2d |  |-  ( x = X -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( ph /\ X < I ) /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) | 
						
							| 16 |  | elfznn |  |-  ( X e. ( 1 ... M ) -> X e. NN ) | 
						
							| 17 | 6 16 | syl |  |-  ( ph -> X e. NN ) | 
						
							| 18 | 17 | nnred |  |-  ( ph -> X e. RR ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ X < I ) -> X e. RR ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ X < I ) -> X < I ) | 
						
							| 21 | 19 20 | ltned |  |-  ( ( ph /\ X < I ) -> X =/= I ) | 
						
							| 22 |  | df-ne |  |-  ( X =/= I <-> -. X = I ) | 
						
							| 23 | 21 22 | sylib |  |-  ( ( ph /\ X < I ) -> -. X = I ) | 
						
							| 24 |  | iffalse |  |-  ( -. X = I -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ph /\ X < I ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 26 |  | iftrue |  |-  ( X < I -> if ( X < I , X , ( X - 1 ) ) = X ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ X < I ) -> if ( X < I , X , ( X - 1 ) ) = X ) | 
						
							| 28 | 25 27 | eqtrd |  |-  ( ( ph /\ X < I ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = X ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ph /\ X < I ) /\ x = X ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = X ) | 
						
							| 30 | 15 29 | eqtrd |  |-  ( ( ( ph /\ X < I ) /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = X ) | 
						
							| 31 | 6 | adantr |  |-  ( ( ph /\ X < I ) -> X e. ( 1 ... M ) ) | 
						
							| 32 | 8 30 31 31 | fvmptd |  |-  ( ( ph /\ X < I ) -> ( A ` X ) = X ) | 
						
							| 33 |  | eqcom |  |-  ( ( A ` X ) = X <-> X = ( A ` X ) ) | 
						
							| 34 | 33 | imbi2i |  |-  ( ( ( ph /\ X < I ) -> ( A ` X ) = X ) <-> ( ( ph /\ X < I ) -> X = ( A ` X ) ) ) | 
						
							| 35 | 32 34 | mpbi |  |-  ( ( ph /\ X < I ) -> X = ( A ` X ) ) | 
						
							| 36 | 35 | eqeq2d |  |-  ( ( ph /\ X < I ) -> ( y = X <-> y = ( A ` X ) ) ) | 
						
							| 37 |  | eqeq1 |  |-  ( y = X -> ( y = M <-> X = M ) ) | 
						
							| 38 |  | breq1 |  |-  ( y = X -> ( y < I <-> X < I ) ) | 
						
							| 39 |  | id |  |-  ( y = X -> y = X ) | 
						
							| 40 |  | oveq1 |  |-  ( y = X -> ( y + 1 ) = ( X + 1 ) ) | 
						
							| 41 | 38 39 40 | ifbieq12d |  |-  ( y = X -> if ( y < I , y , ( y + 1 ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 42 | 37 41 | ifbieq2d |  |-  ( y = X -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( ph /\ X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 44 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ X < I ) -> I e. RR ) | 
						
							| 46 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ X < I ) -> M e. RR ) | 
						
							| 48 | 3 | adantr |  |-  ( ( ph /\ X < I ) -> I <_ M ) | 
						
							| 49 | 19 45 47 20 48 | ltletrd |  |-  ( ( ph /\ X < I ) -> X < M ) | 
						
							| 50 | 19 49 | ltned |  |-  ( ( ph /\ X < I ) -> X =/= M ) | 
						
							| 51 | 50 | neneqd |  |-  ( ( ph /\ X < I ) -> -. X = M ) | 
						
							| 52 |  | iffalse |  |-  ( -. X = M -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( ph /\ X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 54 |  | iftrue |  |-  ( X < I -> if ( X < I , X , ( X + 1 ) ) = X ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ph /\ X < I ) -> if ( X < I , X , ( X + 1 ) ) = X ) | 
						
							| 56 | 53 55 | eqtrd |  |-  ( ( ph /\ X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = X ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ph /\ X < I ) /\ y = X ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = X ) | 
						
							| 58 | 43 57 | eqtrd |  |-  ( ( ( ph /\ X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) | 
						
							| 59 | 58 | ex |  |-  ( ( ph /\ X < I ) -> ( y = X -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) ) | 
						
							| 60 | 36 59 | sylbird |  |-  ( ( ph /\ X < I ) -> ( y = ( A ` X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) ) | 
						
							| 61 | 60 | imp |  |-  ( ( ( ph /\ X < I ) /\ y = ( A ` X ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) | 
						
							| 62 | 1 | adantr |  |-  ( ( ph /\ X < I ) -> M e. NN ) | 
						
							| 63 | 2 | adantr |  |-  ( ( ph /\ X < I ) -> I e. NN ) | 
						
							| 64 | 62 63 48 4 | metakunt1 |  |-  ( ( ph /\ X < I ) -> A : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 65 | 64 31 | ffvelcdmd |  |-  ( ( ph /\ X < I ) -> ( A ` X ) e. ( 1 ... M ) ) | 
						
							| 66 | 7 61 65 31 | fvmptd |  |-  ( ( ph /\ X < I ) -> ( C ` ( A ` X ) ) = X ) |