Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt6.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt6.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt6.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt6.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
5 |
|
metakunt6.5 |
|- C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) |
6 |
|
metakunt6.6 |
|- ( ph -> X e. ( 1 ... M ) ) |
7 |
5
|
a1i |
|- ( ( ph /\ X < I ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) |
8 |
4
|
a1i |
|- ( ( ph /\ X < I ) -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) |
9 |
|
id |
|- ( x = X -> x = X ) |
10 |
9
|
eqeq1d |
|- ( x = X -> ( x = I <-> X = I ) ) |
11 |
|
breq1 |
|- ( x = X -> ( x < I <-> X < I ) ) |
12 |
|
oveq1 |
|- ( x = X -> ( x - 1 ) = ( X - 1 ) ) |
13 |
11 9 12
|
ifbieq12d |
|- ( x = X -> if ( x < I , x , ( x - 1 ) ) = if ( X < I , X , ( X - 1 ) ) ) |
14 |
10 13
|
ifbieq2d |
|- ( x = X -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ( ph /\ X < I ) /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) |
16 |
|
elfznn |
|- ( X e. ( 1 ... M ) -> X e. NN ) |
17 |
6 16
|
syl |
|- ( ph -> X e. NN ) |
18 |
17
|
nnred |
|- ( ph -> X e. RR ) |
19 |
18
|
adantr |
|- ( ( ph /\ X < I ) -> X e. RR ) |
20 |
|
simpr |
|- ( ( ph /\ X < I ) -> X < I ) |
21 |
19 20
|
ltned |
|- ( ( ph /\ X < I ) -> X =/= I ) |
22 |
|
df-ne |
|- ( X =/= I <-> -. X = I ) |
23 |
21 22
|
sylib |
|- ( ( ph /\ X < I ) -> -. X = I ) |
24 |
|
iffalse |
|- ( -. X = I -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = if ( X < I , X , ( X - 1 ) ) ) |
25 |
23 24
|
syl |
|- ( ( ph /\ X < I ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = if ( X < I , X , ( X - 1 ) ) ) |
26 |
|
iftrue |
|- ( X < I -> if ( X < I , X , ( X - 1 ) ) = X ) |
27 |
26
|
adantl |
|- ( ( ph /\ X < I ) -> if ( X < I , X , ( X - 1 ) ) = X ) |
28 |
25 27
|
eqtrd |
|- ( ( ph /\ X < I ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = X ) |
29 |
28
|
adantr |
|- ( ( ( ph /\ X < I ) /\ x = X ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = X ) |
30 |
15 29
|
eqtrd |
|- ( ( ( ph /\ X < I ) /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = X ) |
31 |
6
|
adantr |
|- ( ( ph /\ X < I ) -> X e. ( 1 ... M ) ) |
32 |
8 30 31 31
|
fvmptd |
|- ( ( ph /\ X < I ) -> ( A ` X ) = X ) |
33 |
|
eqcom |
|- ( ( A ` X ) = X <-> X = ( A ` X ) ) |
34 |
33
|
imbi2i |
|- ( ( ( ph /\ X < I ) -> ( A ` X ) = X ) <-> ( ( ph /\ X < I ) -> X = ( A ` X ) ) ) |
35 |
32 34
|
mpbi |
|- ( ( ph /\ X < I ) -> X = ( A ` X ) ) |
36 |
35
|
eqeq2d |
|- ( ( ph /\ X < I ) -> ( y = X <-> y = ( A ` X ) ) ) |
37 |
|
eqeq1 |
|- ( y = X -> ( y = M <-> X = M ) ) |
38 |
|
breq1 |
|- ( y = X -> ( y < I <-> X < I ) ) |
39 |
|
id |
|- ( y = X -> y = X ) |
40 |
|
oveq1 |
|- ( y = X -> ( y + 1 ) = ( X + 1 ) ) |
41 |
38 39 40
|
ifbieq12d |
|- ( y = X -> if ( y < I , y , ( y + 1 ) ) = if ( X < I , X , ( X + 1 ) ) ) |
42 |
37 41
|
ifbieq2d |
|- ( y = X -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |
43 |
42
|
adantl |
|- ( ( ( ph /\ X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |
44 |
2
|
nnred |
|- ( ph -> I e. RR ) |
45 |
44
|
adantr |
|- ( ( ph /\ X < I ) -> I e. RR ) |
46 |
1
|
nnred |
|- ( ph -> M e. RR ) |
47 |
46
|
adantr |
|- ( ( ph /\ X < I ) -> M e. RR ) |
48 |
3
|
adantr |
|- ( ( ph /\ X < I ) -> I <_ M ) |
49 |
19 45 47 20 48
|
ltletrd |
|- ( ( ph /\ X < I ) -> X < M ) |
50 |
19 49
|
ltned |
|- ( ( ph /\ X < I ) -> X =/= M ) |
51 |
50
|
neneqd |
|- ( ( ph /\ X < I ) -> -. X = M ) |
52 |
|
iffalse |
|- ( -. X = M -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) |
53 |
51 52
|
syl |
|- ( ( ph /\ X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) |
54 |
|
iftrue |
|- ( X < I -> if ( X < I , X , ( X + 1 ) ) = X ) |
55 |
54
|
adantl |
|- ( ( ph /\ X < I ) -> if ( X < I , X , ( X + 1 ) ) = X ) |
56 |
53 55
|
eqtrd |
|- ( ( ph /\ X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = X ) |
57 |
56
|
adantr |
|- ( ( ( ph /\ X < I ) /\ y = X ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = X ) |
58 |
43 57
|
eqtrd |
|- ( ( ( ph /\ X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) |
59 |
58
|
ex |
|- ( ( ph /\ X < I ) -> ( y = X -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) ) |
60 |
36 59
|
sylbird |
|- ( ( ph /\ X < I ) -> ( y = ( A ` X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) ) |
61 |
60
|
imp |
|- ( ( ( ph /\ X < I ) /\ y = ( A ` X ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) |
62 |
1
|
adantr |
|- ( ( ph /\ X < I ) -> M e. NN ) |
63 |
2
|
adantr |
|- ( ( ph /\ X < I ) -> I e. NN ) |
64 |
62 63 48 4
|
metakunt1 |
|- ( ( ph /\ X < I ) -> A : ( 1 ... M ) --> ( 1 ... M ) ) |
65 |
64 31
|
ffvelrnd |
|- ( ( ph /\ X < I ) -> ( A ` X ) e. ( 1 ... M ) ) |
66 |
7 61 65 31
|
fvmptd |
|- ( ( ph /\ X < I ) -> ( C ` ( A ` X ) ) = X ) |