| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt7.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt7.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt7.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt7.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt7.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt7.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 | 4 | a1i |  |-  ( ( ph /\ I < X ) -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 |  |-  ( x = X -> ( x = I <-> X = I ) ) | 
						
							| 9 |  | breq1 |  |-  ( x = X -> ( x < I <-> X < I ) ) | 
						
							| 10 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 11 |  | oveq1 |  |-  ( x = X -> ( x - 1 ) = ( X - 1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d |  |-  ( x = X -> if ( x < I , x , ( x - 1 ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d |  |-  ( x = X -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ I < X ) /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) ) | 
						
							| 15 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ I < X ) -> I e. RR ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ I < X ) -> I < X ) | 
						
							| 18 | 16 17 | ltned |  |-  ( ( ph /\ I < X ) -> I =/= X ) | 
						
							| 19 | 18 | necomd |  |-  ( ( ph /\ I < X ) -> X =/= I ) | 
						
							| 20 |  | df-ne |  |-  ( X =/= I <-> -. X = I ) | 
						
							| 21 | 19 20 | sylib |  |-  ( ( ph /\ I < X ) -> -. X = I ) | 
						
							| 22 |  | iffalse |  |-  ( -. X = I -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ph /\ I < X ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = if ( X < I , X , ( X - 1 ) ) ) | 
						
							| 24 |  | elfznn |  |-  ( X e. ( 1 ... M ) -> X e. NN ) | 
						
							| 25 | 6 24 | syl |  |-  ( ph -> X e. NN ) | 
						
							| 26 | 25 | nnred |  |-  ( ph -> X e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ I < X ) -> X e. RR ) | 
						
							| 28 | 16 27 17 | ltled |  |-  ( ( ph /\ I < X ) -> I <_ X ) | 
						
							| 29 | 16 27 | lenltd |  |-  ( ( ph /\ I < X ) -> ( I <_ X <-> -. X < I ) ) | 
						
							| 30 | 28 29 | mpbid |  |-  ( ( ph /\ I < X ) -> -. X < I ) | 
						
							| 31 |  | iffalse |  |-  ( -. X < I -> if ( X < I , X , ( X - 1 ) ) = ( X - 1 ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ph /\ I < X ) -> if ( X < I , X , ( X - 1 ) ) = ( X - 1 ) ) | 
						
							| 33 | 23 32 | eqtrd |  |-  ( ( ph /\ I < X ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = ( X - 1 ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ph /\ I < X ) /\ x = X ) -> if ( X = I , M , if ( X < I , X , ( X - 1 ) ) ) = ( X - 1 ) ) | 
						
							| 35 | 14 34 | eqtrd |  |-  ( ( ( ph /\ I < X ) /\ x = X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = ( X - 1 ) ) | 
						
							| 36 | 6 | adantr |  |-  ( ( ph /\ I < X ) -> X e. ( 1 ... M ) ) | 
						
							| 37 | 36 | elfzelzd |  |-  ( ( ph /\ I < X ) -> X e. ZZ ) | 
						
							| 38 |  | 1zzd |  |-  ( ( ph /\ I < X ) -> 1 e. ZZ ) | 
						
							| 39 | 37 38 | zsubcld |  |-  ( ( ph /\ I < X ) -> ( X - 1 ) e. ZZ ) | 
						
							| 40 | 7 35 36 39 | fvmptd |  |-  ( ( ph /\ I < X ) -> ( A ` X ) = ( X - 1 ) ) | 
						
							| 41 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 42 | 26 41 | resubcld |  |-  ( ph -> ( X - 1 ) e. RR ) | 
						
							| 43 |  | elfzle2 |  |-  ( X e. ( 1 ... M ) -> X <_ M ) | 
						
							| 44 | 6 43 | syl |  |-  ( ph -> X <_ M ) | 
						
							| 45 | 6 | elfzelzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 46 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 47 |  | zlem1lt |  |-  ( ( X e. ZZ /\ M e. ZZ ) -> ( X <_ M <-> ( X - 1 ) < M ) ) | 
						
							| 48 | 45 46 47 | syl2anc |  |-  ( ph -> ( X <_ M <-> ( X - 1 ) < M ) ) | 
						
							| 49 | 44 48 | mpbid |  |-  ( ph -> ( X - 1 ) < M ) | 
						
							| 50 | 42 49 | ltned |  |-  ( ph -> ( X - 1 ) =/= M ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ I < X ) -> ( X - 1 ) =/= M ) | 
						
							| 52 | 40 51 | eqnetrd |  |-  ( ( ph /\ I < X ) -> ( A ` X ) =/= M ) | 
						
							| 53 | 52 | neneqd |  |-  ( ( ph /\ I < X ) -> -. ( A ` X ) = M ) | 
						
							| 54 | 2 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 55 |  | zltlem1 |  |-  ( ( I e. ZZ /\ X e. ZZ ) -> ( I < X <-> I <_ ( X - 1 ) ) ) | 
						
							| 56 | 55 | biimpd |  |-  ( ( I e. ZZ /\ X e. ZZ ) -> ( I < X -> I <_ ( X - 1 ) ) ) | 
						
							| 57 | 54 45 56 | syl2anc |  |-  ( ph -> ( I < X -> I <_ ( X - 1 ) ) ) | 
						
							| 58 | 57 | imp |  |-  ( ( ph /\ I < X ) -> I <_ ( X - 1 ) ) | 
						
							| 59 | 58 40 | breqtrrd |  |-  ( ( ph /\ I < X ) -> I <_ ( A ` X ) ) | 
						
							| 60 | 39 | zred |  |-  ( ( ph /\ I < X ) -> ( X - 1 ) e. RR ) | 
						
							| 61 | 40 60 | eqeltrd |  |-  ( ( ph /\ I < X ) -> ( A ` X ) e. RR ) | 
						
							| 62 | 16 61 | lenltd |  |-  ( ( ph /\ I < X ) -> ( I <_ ( A ` X ) <-> -. ( A ` X ) < I ) ) | 
						
							| 63 | 59 62 | mpbid |  |-  ( ( ph /\ I < X ) -> -. ( A ` X ) < I ) | 
						
							| 64 | 40 53 63 | 3jca |  |-  ( ( ph /\ I < X ) -> ( ( A ` X ) = ( X - 1 ) /\ -. ( A ` X ) = M /\ -. ( A ` X ) < I ) ) |