| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt7.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt7.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt7.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt7.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt7.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt7.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝐼  ↔  𝑋  =  𝐼 ) ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  −  1 )  =  ( 𝑋  −  1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d | ⊢ ( 𝑥  =  𝑋  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐼  <  𝑋 )  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) ) | 
						
							| 15 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐼  ∈  ℝ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐼  <  𝑋 ) | 
						
							| 18 | 16 17 | ltned | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐼  ≠  𝑋 ) | 
						
							| 19 | 18 | necomd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝑋  ≠  𝐼 ) | 
						
							| 20 |  | df-ne | ⊢ ( 𝑋  ≠  𝐼  ↔  ¬  𝑋  =  𝐼 ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ¬  𝑋  =  𝐼 ) | 
						
							| 22 |  | iffalse | ⊢ ( ¬  𝑋  =  𝐼  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 24 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 25 | 6 24 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 26 | 25 | nnred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝑋  ∈  ℝ ) | 
						
							| 28 | 16 27 17 | ltled | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐼  ≤  𝑋 ) | 
						
							| 29 | 16 27 | lenltd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐼  ≤  𝑋  ↔  ¬  𝑋  <  𝐼 ) ) | 
						
							| 30 | 28 29 | mpbid | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ¬  𝑋  <  𝐼 ) | 
						
							| 31 |  | iffalse | ⊢ ( ¬  𝑋  <  𝐼  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  =  ( 𝑋  −  1 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  =  ( 𝑋  −  1 ) ) | 
						
							| 33 | 23 32 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  ( 𝑋  −  1 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐼  <  𝑋 )  ∧  𝑥  =  𝑋 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) )  =  ( 𝑋  −  1 ) ) | 
						
							| 35 | 14 34 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝐼  <  𝑋 )  ∧  𝑥  =  𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  ( 𝑋  −  1 ) ) | 
						
							| 36 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 37 | 36 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝑋  ∈  ℤ ) | 
						
							| 38 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  1  ∈  ℤ ) | 
						
							| 39 | 37 38 | zsubcld | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝑋  −  1 )  ∈  ℤ ) | 
						
							| 40 | 7 35 36 39 | fvmptd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝑋  −  1 ) ) | 
						
							| 41 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 42 | 26 41 | resubcld | ⊢ ( 𝜑  →  ( 𝑋  −  1 )  ∈  ℝ ) | 
						
							| 43 |  | elfzle2 | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ≤  𝑀 ) | 
						
							| 44 | 6 43 | syl | ⊢ ( 𝜑  →  𝑋  ≤  𝑀 ) | 
						
							| 45 | 6 | elfzelzd | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 46 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 47 |  | zlem1lt | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑋  ≤  𝑀  ↔  ( 𝑋  −  1 )  <  𝑀 ) ) | 
						
							| 48 | 45 46 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ≤  𝑀  ↔  ( 𝑋  −  1 )  <  𝑀 ) ) | 
						
							| 49 | 44 48 | mpbid | ⊢ ( 𝜑  →  ( 𝑋  −  1 )  <  𝑀 ) | 
						
							| 50 | 42 49 | ltned | ⊢ ( 𝜑  →  ( 𝑋  −  1 )  ≠  𝑀 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝑋  −  1 )  ≠  𝑀 ) | 
						
							| 52 | 40 51 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐴 ‘ 𝑋 )  ≠  𝑀 ) | 
						
							| 53 | 52 | neneqd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ¬  ( 𝐴 ‘ 𝑋 )  =  𝑀 ) | 
						
							| 54 | 2 | nnzd | ⊢ ( 𝜑  →  𝐼  ∈  ℤ ) | 
						
							| 55 |  | zltlem1 | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 𝐼  <  𝑋  ↔  𝐼  ≤  ( 𝑋  −  1 ) ) ) | 
						
							| 56 | 55 | biimpd | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝑋  ∈  ℤ )  →  ( 𝐼  <  𝑋  →  𝐼  ≤  ( 𝑋  −  1 ) ) ) | 
						
							| 57 | 54 45 56 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  <  𝑋  →  𝐼  ≤  ( 𝑋  −  1 ) ) ) | 
						
							| 58 | 57 | imp | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐼  ≤  ( 𝑋  −  1 ) ) | 
						
							| 59 | 58 40 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐼  ≤  ( 𝐴 ‘ 𝑋 ) ) | 
						
							| 60 | 39 | zred | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝑋  −  1 )  ∈  ℝ ) | 
						
							| 61 | 40 60 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 62 | 16 61 | lenltd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐼  ≤  ( 𝐴 ‘ 𝑋 )  ↔  ¬  ( 𝐴 ‘ 𝑋 )  <  𝐼 ) ) | 
						
							| 63 | 59 62 | mpbid | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ¬  ( 𝐴 ‘ 𝑋 )  <  𝐼 ) | 
						
							| 64 | 40 53 63 | 3jca | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( ( 𝐴 ‘ 𝑋 )  =  ( 𝑋  −  1 )  ∧  ¬  ( 𝐴 ‘ 𝑋 )  =  𝑀  ∧  ¬  ( 𝐴 ‘ 𝑋 )  <  𝐼 ) ) |