| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt8.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt8.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt8.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt8.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt8.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt8.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  ( 𝑦  =  𝑀  ↔  ( 𝐴 ‘ 𝑋 )  =  𝑀 ) ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  ( 𝑦  <  𝐼  ↔  ( 𝐴 ‘ 𝑋 )  <  𝐼 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  𝑦  =  ( 𝐴 ‘ 𝑋 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  ( 𝑦  +  1 )  =  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d | ⊢ ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d | ⊢ ( 𝑦  =  ( 𝐴 ‘ 𝑋 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( ( 𝐴 ‘ 𝑋 )  =  𝑀 ,  𝐼 ,  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐼  <  𝑋 )  ∧  𝑦  =  ( 𝐴 ‘ 𝑋 ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( ( 𝐴 ‘ 𝑋 )  =  𝑀 ,  𝐼 ,  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 | metakunt7 | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( ( 𝐴 ‘ 𝑋 )  =  ( 𝑋  −  1 )  ∧  ¬  ( 𝐴 ‘ 𝑋 )  =  𝑀  ∧  ¬  ( 𝐴 ‘ 𝑋 )  <  𝐼 ) ) | 
						
							| 16 | 15 | simp2d | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ¬  ( 𝐴 ‘ 𝑋 )  =  𝑀 ) | 
						
							| 17 |  | iffalse | ⊢ ( ¬  ( 𝐴 ‘ 𝑋 )  =  𝑀  →  if ( ( 𝐴 ‘ 𝑋 )  =  𝑀 ,  𝐼 ,  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) )  =  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  if ( ( 𝐴 ‘ 𝑋 )  =  𝑀 ,  𝐼 ,  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) )  =  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) ) | 
						
							| 19 | 15 | simp3d | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ¬  ( 𝐴 ‘ 𝑋 )  <  𝐼 ) | 
						
							| 20 |  | iffalse | ⊢ ( ¬  ( 𝐴 ‘ 𝑋 )  <  𝐼  →  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) )  =  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) )  =  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) | 
						
							| 22 | 18 21 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  if ( ( 𝐴 ‘ 𝑋 )  =  𝑀 ,  𝐼 ,  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) )  =  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) | 
						
							| 23 | 15 | simp1d | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐴 ‘ 𝑋 )  =  ( 𝑋  −  1 ) ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( ( 𝐴 ‘ 𝑋 )  +  1 )  =  ( ( 𝑋  −  1 )  +  1 ) ) | 
						
							| 25 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 26 | 6 25 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 27 | 26 | nncnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 28 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 29 | 27 28 | npcand | ⊢ ( 𝜑  →  ( ( 𝑋  −  1 )  +  1 )  =  𝑋 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( ( 𝑋  −  1 )  +  1 )  =  𝑋 ) | 
						
							| 31 | 24 30 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( ( 𝐴 ‘ 𝑋 )  +  1 )  =  𝑋 ) | 
						
							| 32 | 22 31 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  if ( ( 𝐴 ‘ 𝑋 )  =  𝑀 ,  𝐼 ,  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) )  =  𝑋 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐼  <  𝑋 )  ∧  𝑦  =  ( 𝐴 ‘ 𝑋 ) )  →  if ( ( 𝐴 ‘ 𝑋 )  =  𝑀 ,  𝐼 ,  if ( ( 𝐴 ‘ 𝑋 )  <  𝐼 ,  ( 𝐴 ‘ 𝑋 ) ,  ( ( 𝐴 ‘ 𝑋 )  +  1 ) ) )  =  𝑋 ) | 
						
							| 34 | 14 33 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝐼  <  𝑋 )  ∧  𝑦  =  ( 𝐴 ‘ 𝑋 ) )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) | 
						
							| 35 | 1 2 3 4 | metakunt1 | ⊢ ( 𝜑  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 37 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 38 | 36 37 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 39 | 7 34 38 37 | fvmptd | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) |