Metamath Proof Explorer


Theorem metakunt8

Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt8.1 φ M
metakunt8.2 φ I
metakunt8.3 φ I M
metakunt8.4 A = x 1 M if x = I M if x < I x x 1
metakunt8.5 C = y 1 M if y = M I if y < I y y + 1
metakunt8.6 φ X 1 M
Assertion metakunt8 φ I < X C A X = X

Proof

Step Hyp Ref Expression
1 metakunt8.1 φ M
2 metakunt8.2 φ I
3 metakunt8.3 φ I M
4 metakunt8.4 A = x 1 M if x = I M if x < I x x 1
5 metakunt8.5 C = y 1 M if y = M I if y < I y y + 1
6 metakunt8.6 φ X 1 M
7 5 a1i φ I < X C = y 1 M if y = M I if y < I y y + 1
8 eqeq1 y = A X y = M A X = M
9 breq1 y = A X y < I A X < I
10 id y = A X y = A X
11 oveq1 y = A X y + 1 = A X + 1
12 9 10 11 ifbieq12d y = A X if y < I y y + 1 = if A X < I A X A X + 1
13 8 12 ifbieq2d y = A X if y = M I if y < I y y + 1 = if A X = M I if A X < I A X A X + 1
14 13 adantl φ I < X y = A X if y = M I if y < I y y + 1 = if A X = M I if A X < I A X A X + 1
15 1 2 3 4 5 6 metakunt7 φ I < X A X = X 1 ¬ A X = M ¬ A X < I
16 15 simp2d φ I < X ¬ A X = M
17 iffalse ¬ A X = M if A X = M I if A X < I A X A X + 1 = if A X < I A X A X + 1
18 16 17 syl φ I < X if A X = M I if A X < I A X A X + 1 = if A X < I A X A X + 1
19 15 simp3d φ I < X ¬ A X < I
20 iffalse ¬ A X < I if A X < I A X A X + 1 = A X + 1
21 19 20 syl φ I < X if A X < I A X A X + 1 = A X + 1
22 18 21 eqtrd φ I < X if A X = M I if A X < I A X A X + 1 = A X + 1
23 15 simp1d φ I < X A X = X 1
24 23 oveq1d φ I < X A X + 1 = X - 1 + 1
25 elfznn X 1 M X
26 6 25 syl φ X
27 26 nncnd φ X
28 1cnd φ 1
29 27 28 npcand φ X - 1 + 1 = X
30 29 adantr φ I < X X - 1 + 1 = X
31 24 30 eqtrd φ I < X A X + 1 = X
32 22 31 eqtrd φ I < X if A X = M I if A X < I A X A X + 1 = X
33 32 adantr φ I < X y = A X if A X = M I if A X < I A X A X + 1 = X
34 14 33 eqtrd φ I < X y = A X if y = M I if y < I y y + 1 = X
35 1 2 3 4 metakunt1 φ A : 1 M 1 M
36 35 adantr φ I < X A : 1 M 1 M
37 6 adantr φ I < X X 1 M
38 36 37 ffvelrnd φ I < X A X 1 M
39 7 34 38 37 fvmptd φ I < X C A X = X