| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt8.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt8.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt8.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt8.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt8.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt8.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 | 5 | a1i |  |-  ( ( ph /\ I < X ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 |  |-  ( y = ( A ` X ) -> ( y = M <-> ( A ` X ) = M ) ) | 
						
							| 9 |  | breq1 |  |-  ( y = ( A ` X ) -> ( y < I <-> ( A ` X ) < I ) ) | 
						
							| 10 |  | id |  |-  ( y = ( A ` X ) -> y = ( A ` X ) ) | 
						
							| 11 |  | oveq1 |  |-  ( y = ( A ` X ) -> ( y + 1 ) = ( ( A ` X ) + 1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d |  |-  ( y = ( A ` X ) -> if ( y < I , y , ( y + 1 ) ) = if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d |  |-  ( y = ( A ` X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ I < X ) /\ y = ( A ` X ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 | metakunt7 |  |-  ( ( ph /\ I < X ) -> ( ( A ` X ) = ( X - 1 ) /\ -. ( A ` X ) = M /\ -. ( A ` X ) < I ) ) | 
						
							| 16 | 15 | simp2d |  |-  ( ( ph /\ I < X ) -> -. ( A ` X ) = M ) | 
						
							| 17 |  | iffalse |  |-  ( -. ( A ` X ) = M -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ph /\ I < X ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) | 
						
							| 19 | 15 | simp3d |  |-  ( ( ph /\ I < X ) -> -. ( A ` X ) < I ) | 
						
							| 20 |  | iffalse |  |-  ( -. ( A ` X ) < I -> if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) = ( ( A ` X ) + 1 ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ph /\ I < X ) -> if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) = ( ( A ` X ) + 1 ) ) | 
						
							| 22 | 18 21 | eqtrd |  |-  ( ( ph /\ I < X ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = ( ( A ` X ) + 1 ) ) | 
						
							| 23 | 15 | simp1d |  |-  ( ( ph /\ I < X ) -> ( A ` X ) = ( X - 1 ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( ph /\ I < X ) -> ( ( A ` X ) + 1 ) = ( ( X - 1 ) + 1 ) ) | 
						
							| 25 |  | elfznn |  |-  ( X e. ( 1 ... M ) -> X e. NN ) | 
						
							| 26 | 6 25 | syl |  |-  ( ph -> X e. NN ) | 
						
							| 27 | 26 | nncnd |  |-  ( ph -> X e. CC ) | 
						
							| 28 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 29 | 27 28 | npcand |  |-  ( ph -> ( ( X - 1 ) + 1 ) = X ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ I < X ) -> ( ( X - 1 ) + 1 ) = X ) | 
						
							| 31 | 24 30 | eqtrd |  |-  ( ( ph /\ I < X ) -> ( ( A ` X ) + 1 ) = X ) | 
						
							| 32 | 22 31 | eqtrd |  |-  ( ( ph /\ I < X ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = X ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( ph /\ I < X ) /\ y = ( A ` X ) ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = X ) | 
						
							| 34 | 14 33 | eqtrd |  |-  ( ( ( ph /\ I < X ) /\ y = ( A ` X ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) | 
						
							| 35 | 1 2 3 4 | metakunt1 |  |-  ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ I < X ) -> A : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 37 | 6 | adantr |  |-  ( ( ph /\ I < X ) -> X e. ( 1 ... M ) ) | 
						
							| 38 | 36 37 | ffvelcdmd |  |-  ( ( ph /\ I < X ) -> ( A ` X ) e. ( 1 ... M ) ) | 
						
							| 39 | 7 34 38 37 | fvmptd |  |-  ( ( ph /\ I < X ) -> ( C ` ( A ` X ) ) = X ) |