Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt8.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt8.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt8.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt8.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
5 |
|
metakunt8.5 |
|- C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) |
6 |
|
metakunt8.6 |
|- ( ph -> X e. ( 1 ... M ) ) |
7 |
5
|
a1i |
|- ( ( ph /\ I < X ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) |
8 |
|
eqeq1 |
|- ( y = ( A ` X ) -> ( y = M <-> ( A ` X ) = M ) ) |
9 |
|
breq1 |
|- ( y = ( A ` X ) -> ( y < I <-> ( A ` X ) < I ) ) |
10 |
|
id |
|- ( y = ( A ` X ) -> y = ( A ` X ) ) |
11 |
|
oveq1 |
|- ( y = ( A ` X ) -> ( y + 1 ) = ( ( A ` X ) + 1 ) ) |
12 |
9 10 11
|
ifbieq12d |
|- ( y = ( A ` X ) -> if ( y < I , y , ( y + 1 ) ) = if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) |
13 |
8 12
|
ifbieq2d |
|- ( y = ( A ` X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) ) |
14 |
13
|
adantl |
|- ( ( ( ph /\ I < X ) /\ y = ( A ` X ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) ) |
15 |
1 2 3 4 5 6
|
metakunt7 |
|- ( ( ph /\ I < X ) -> ( ( A ` X ) = ( X - 1 ) /\ -. ( A ` X ) = M /\ -. ( A ` X ) < I ) ) |
16 |
15
|
simp2d |
|- ( ( ph /\ I < X ) -> -. ( A ` X ) = M ) |
17 |
|
iffalse |
|- ( -. ( A ` X ) = M -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) |
18 |
16 17
|
syl |
|- ( ( ph /\ I < X ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) |
19 |
15
|
simp3d |
|- ( ( ph /\ I < X ) -> -. ( A ` X ) < I ) |
20 |
|
iffalse |
|- ( -. ( A ` X ) < I -> if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) = ( ( A ` X ) + 1 ) ) |
21 |
19 20
|
syl |
|- ( ( ph /\ I < X ) -> if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) = ( ( A ` X ) + 1 ) ) |
22 |
18 21
|
eqtrd |
|- ( ( ph /\ I < X ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = ( ( A ` X ) + 1 ) ) |
23 |
15
|
simp1d |
|- ( ( ph /\ I < X ) -> ( A ` X ) = ( X - 1 ) ) |
24 |
23
|
oveq1d |
|- ( ( ph /\ I < X ) -> ( ( A ` X ) + 1 ) = ( ( X - 1 ) + 1 ) ) |
25 |
|
elfznn |
|- ( X e. ( 1 ... M ) -> X e. NN ) |
26 |
6 25
|
syl |
|- ( ph -> X e. NN ) |
27 |
26
|
nncnd |
|- ( ph -> X e. CC ) |
28 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
29 |
27 28
|
npcand |
|- ( ph -> ( ( X - 1 ) + 1 ) = X ) |
30 |
29
|
adantr |
|- ( ( ph /\ I < X ) -> ( ( X - 1 ) + 1 ) = X ) |
31 |
24 30
|
eqtrd |
|- ( ( ph /\ I < X ) -> ( ( A ` X ) + 1 ) = X ) |
32 |
22 31
|
eqtrd |
|- ( ( ph /\ I < X ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = X ) |
33 |
32
|
adantr |
|- ( ( ( ph /\ I < X ) /\ y = ( A ` X ) ) -> if ( ( A ` X ) = M , I , if ( ( A ` X ) < I , ( A ` X ) , ( ( A ` X ) + 1 ) ) ) = X ) |
34 |
14 33
|
eqtrd |
|- ( ( ( ph /\ I < X ) /\ y = ( A ` X ) ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = X ) |
35 |
1 2 3 4
|
metakunt1 |
|- ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ I < X ) -> A : ( 1 ... M ) --> ( 1 ... M ) ) |
37 |
6
|
adantr |
|- ( ( ph /\ I < X ) -> X e. ( 1 ... M ) ) |
38 |
36 37
|
ffvelrnd |
|- ( ( ph /\ I < X ) -> ( A ` X ) e. ( 1 ... M ) ) |
39 |
7 34 38 37
|
fvmptd |
|- ( ( ph /\ I < X ) -> ( C ` ( A ` X ) ) = X ) |