Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt9.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt9.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt9.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt9.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
5 |
|
metakunt9.5 |
|- C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) |
6 |
|
metakunt9.6 |
|- ( ph -> X e. ( 1 ... M ) ) |
7 |
1 2 3 4 5 6
|
metakunt8 |
|- ( ( ph /\ I < X ) -> ( C ` ( A ` X ) ) = X ) |
8 |
|
elfznn |
|- ( X e. ( 1 ... M ) -> X e. NN ) |
9 |
6 8
|
syl |
|- ( ph -> X e. NN ) |
10 |
9
|
nnred |
|- ( ph -> X e. RR ) |
11 |
2
|
nnred |
|- ( ph -> I e. RR ) |
12 |
10 11
|
leloed |
|- ( ph -> ( X <_ I <-> ( X < I \/ X = I ) ) ) |
13 |
1 2 3 4 5 6
|
metakunt6 |
|- ( ( ph /\ X < I ) -> ( C ` ( A ` X ) ) = X ) |
14 |
1 2 3 4 5 6
|
metakunt5 |
|- ( ( ph /\ X = I ) -> ( C ` ( A ` X ) ) = X ) |
15 |
13 14
|
jaodan |
|- ( ( ph /\ ( X < I \/ X = I ) ) -> ( C ` ( A ` X ) ) = X ) |
16 |
15
|
ex |
|- ( ph -> ( ( X < I \/ X = I ) -> ( C ` ( A ` X ) ) = X ) ) |
17 |
12 16
|
sylbid |
|- ( ph -> ( X <_ I -> ( C ` ( A ` X ) ) = X ) ) |
18 |
17
|
imp |
|- ( ( ph /\ X <_ I ) -> ( C ` ( A ` X ) ) = X ) |
19 |
7 18 11 10
|
ltlecasei |
|- ( ph -> ( C ` ( A ` X ) ) = X ) |