| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt10.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt10.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt10.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt10.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt10.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt10.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 | 4 | a1i |  |-  ( ( ph /\ X = M ) -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 |  |-  ( x = ( C ` X ) -> ( x = I <-> ( C ` X ) = I ) ) | 
						
							| 9 |  | breq1 |  |-  ( x = ( C ` X ) -> ( x < I <-> ( C ` X ) < I ) ) | 
						
							| 10 |  | id |  |-  ( x = ( C ` X ) -> x = ( C ` X ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = ( C ` X ) -> ( x - 1 ) = ( ( C ` X ) - 1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d |  |-  ( x = ( C ` X ) -> if ( x < I , x , ( x - 1 ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d |  |-  ( x = ( C ` X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ X = M ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( X = M -> ( C ` X ) = ( C ` M ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ X = M ) -> ( C ` X ) = ( C ` M ) ) | 
						
							| 17 | 5 | a1i |  |-  ( ph -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) | 
						
							| 18 |  | iftrue |  |-  ( y = M -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = I ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ y = M ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = I ) | 
						
							| 20 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 21 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 22 | 1 | nnge1d |  |-  ( ph -> 1 <_ M ) | 
						
							| 23 | 1 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 24 | 23 | leidd |  |-  ( ph -> M <_ M ) | 
						
							| 25 | 20 21 21 22 24 | elfzd |  |-  ( ph -> M e. ( 1 ... M ) ) | 
						
							| 26 | 17 19 25 2 | fvmptd |  |-  ( ph -> ( C ` M ) = I ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ X = M ) -> ( C ` M ) = I ) | 
						
							| 28 | 16 27 | eqtrd |  |-  ( ( ph /\ X = M ) -> ( C ` X ) = I ) | 
						
							| 29 |  | iftrue |  |-  ( ( C ` X ) = I -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = M ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ph /\ X = M ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = M ) | 
						
							| 31 |  | simpr |  |-  ( ( ph /\ X = M ) -> X = M ) | 
						
							| 32 | 31 | eqcomd |  |-  ( ( ph /\ X = M ) -> M = X ) | 
						
							| 33 | 30 32 | eqtrd |  |-  ( ( ph /\ X = M ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ph /\ X = M ) /\ x = ( C ` X ) ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) | 
						
							| 35 | 14 34 | eqtrd |  |-  ( ( ( ph /\ X = M ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = X ) | 
						
							| 36 | 1 2 3 5 | metakunt2 |  |-  ( ph -> C : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ X = M ) -> C : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 38 | 6 | adantr |  |-  ( ( ph /\ X = M ) -> X e. ( 1 ... M ) ) | 
						
							| 39 | 37 38 | ffvelcdmd |  |-  ( ( ph /\ X = M ) -> ( C ` X ) e. ( 1 ... M ) ) | 
						
							| 40 | 7 35 39 38 | fvmptd |  |-  ( ( ph /\ X = M ) -> ( A ` ( C ` X ) ) = X ) |