| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt10.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt10.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt10.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt10.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt10.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt10.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑥  =  𝐼  ↔  ( 𝐶 ‘ 𝑋 )  =  𝐼 ) ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑥  <  𝐼  ↔  ( 𝐶 ‘ 𝑋 )  <  𝐼 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  𝑥  =  ( 𝐶 ‘ 𝑋 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑥  −  1 )  =  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑋  =  𝑀 )  ∧  𝑥  =  ( 𝐶 ‘ 𝑋 ) )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑋  =  𝑀  →  ( 𝐶 ‘ 𝑋 )  =  ( 𝐶 ‘ 𝑀 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  ( 𝐶 ‘ 𝑋 )  =  ( 𝐶 ‘ 𝑀 ) ) | 
						
							| 17 | 5 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 18 |  | iftrue | ⊢ ( 𝑦  =  𝑀  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝐼 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  𝑀 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝐼 ) | 
						
							| 20 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 21 | 1 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 22 | 1 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 23 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 24 | 23 | leidd | ⊢ ( 𝜑  →  𝑀  ≤  𝑀 ) | 
						
							| 25 | 20 21 21 22 24 | elfzd | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 26 | 17 19 25 2 | fvmptd | ⊢ ( 𝜑  →  ( 𝐶 ‘ 𝑀 )  =  𝐼 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  ( 𝐶 ‘ 𝑀 )  =  𝐼 ) | 
						
							| 28 | 16 27 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  ( 𝐶 ‘ 𝑋 )  =  𝐼 ) | 
						
							| 29 |  | iftrue | ⊢ ( ( 𝐶 ‘ 𝑋 )  =  𝐼  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  𝑀 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  𝑀 ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝑋  =  𝑀 ) | 
						
							| 32 | 31 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝑀  =  𝑋 ) | 
						
							| 33 | 30 32 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  𝑋 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  =  𝑀 )  ∧  𝑥  =  ( 𝐶 ‘ 𝑋 ) )  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  𝑋 ) | 
						
							| 35 | 14 34 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑋  =  𝑀 )  ∧  𝑥  =  ( 𝐶 ‘ 𝑋 ) )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑋 ) | 
						
							| 36 | 1 2 3 5 | metakunt2 | ⊢ ( 𝜑  →  𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 38 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 39 | 37 38 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  ( 𝐶 ‘ 𝑋 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 40 | 7 35 39 38 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) |