| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt11.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt11.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt11.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt11.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt11.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt11.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 4 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) ) | 
						
							| 8 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑥  =  𝐼  ↔  ( 𝐶 ‘ 𝑋 )  =  𝐼 ) ) | 
						
							| 9 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑥  <  𝐼  ↔  ( 𝐶 ‘ 𝑋 )  <  𝐼 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  𝑥  =  ( 𝐶 ‘ 𝑋 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑥  −  1 )  =  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) | 
						
							| 12 | 9 10 11 | ifbieq12d | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) )  =  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) | 
						
							| 13 | 8 12 | ifbieq2d | ⊢ ( 𝑥  =  ( 𝐶 ‘ 𝑋 )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑥  =  ( 𝐶 ‘ 𝑋 ) )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) ) | 
						
							| 15 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) ) | 
						
							| 16 |  | eqeq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  =  𝑀  ↔  𝑋  =  𝑀 ) ) | 
						
							| 17 |  | breq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  <  𝐼  ↔  𝑋  <  𝐼 ) ) | 
						
							| 18 |  | id | ⊢ ( 𝑦  =  𝑋  →  𝑦  =  𝑋 ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  +  1 )  =  ( 𝑋  +  1 ) ) | 
						
							| 20 | 17 18 19 | ifbieq12d | ⊢ ( 𝑦  =  𝑋  →  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) | 
						
							| 21 | 16 20 | ifbieq2d | ⊢ ( 𝑦  =  𝑋  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑦  =  𝑋 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) ) | 
						
							| 23 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 24 | 6 23 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 25 | 24 | nnred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ∈  ℝ ) | 
						
							| 27 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐼  ∈  ℝ ) | 
						
							| 29 | 1 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑀  ∈  ℝ ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  <  𝐼 ) | 
						
							| 32 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐼  ≤  𝑀 ) | 
						
							| 33 | 26 28 30 31 32 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  <  𝑀 ) | 
						
							| 34 | 26 33 | ltned | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ≠  𝑀 ) | 
						
							| 35 |  | df-ne | ⊢ ( 𝑋  ≠  𝑀  ↔  ¬  𝑋  =  𝑀 ) | 
						
							| 36 | 34 35 | sylib | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ¬  𝑋  =  𝑀 ) | 
						
							| 37 |  | iffalse | ⊢ ( ¬  𝑋  =  𝑀  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) ) | 
						
							| 39 |  | iftrue | ⊢ ( 𝑋  <  𝐼  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) )  =  𝑋 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) )  =  𝑋 ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  𝑋 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑦  =  𝑋 )  →  if ( 𝑋  =  𝑀 ,  𝐼 ,  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  +  1 ) ) )  =  𝑋 ) | 
						
							| 43 | 22 42 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑦  =  𝑋 )  →  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  =  𝑋 ) | 
						
							| 44 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 45 | 15 43 44 44 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐶 ‘ 𝑋 )  =  𝑋 ) | 
						
							| 46 |  | eqeq1 | ⊢ ( ( 𝐶 ‘ 𝑋 )  =  𝑋  →  ( ( 𝐶 ‘ 𝑋 )  =  𝐼  ↔  𝑋  =  𝐼 ) ) | 
						
							| 47 | 46 | ifbid | ⊢ ( ( 𝐶 ‘ 𝑋 )  =  𝑋  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) ) | 
						
							| 48 | 45 47 | syl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) ) | 
						
							| 49 | 26 31 | ltned | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  ≠  𝐼 ) | 
						
							| 50 | 49 | neneqd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ¬  𝑋  =  𝐼 ) | 
						
							| 51 |  | iffalse | ⊢ ( ¬  𝑋  =  𝐼  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) | 
						
							| 53 | 45 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝑋  =  ( 𝐶 ‘ 𝑋 ) ) | 
						
							| 54 |  | breq1 | ⊢ ( 𝑋  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑋  <  𝐼  ↔  ( 𝐶 ‘ 𝑋 )  <  𝐼 ) ) | 
						
							| 55 |  | id | ⊢ ( 𝑋  =  ( 𝐶 ‘ 𝑋 )  →  𝑋  =  ( 𝐶 ‘ 𝑋 ) ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝑋  =  ( 𝐶 ‘ 𝑋 )  →  ( 𝑋  −  1 )  =  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) | 
						
							| 57 | 54 55 56 | ifbieq12d | ⊢ ( 𝑋  =  ( 𝐶 ‘ 𝑋 )  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  =  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) | 
						
							| 58 | 53 57 | syl | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  =  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) ) | 
						
							| 59 | 58 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) )  =  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) ) ) | 
						
							| 60 | 31 | iftrued | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  <  𝐼 ,  𝑋 ,  ( 𝑋  −  1 ) )  =  𝑋 ) | 
						
							| 61 | 59 60 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) )  =  𝑋 ) | 
						
							| 62 | 52 61 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( 𝑋  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  𝑋 ) | 
						
							| 63 | 48 62 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  𝑋 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑥  =  ( 𝐶 ‘ 𝑋 ) )  →  if ( ( 𝐶 ‘ 𝑋 )  =  𝐼 ,  𝑀 ,  if ( ( 𝐶 ‘ 𝑋 )  <  𝐼 ,  ( 𝐶 ‘ 𝑋 ) ,  ( ( 𝐶 ‘ 𝑋 )  −  1 ) ) )  =  𝑋 ) | 
						
							| 65 | 14 64 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑋  <  𝐼 )  ∧  𝑥  =  ( 𝐶 ‘ 𝑋 ) )  →  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) )  =  𝑋 ) | 
						
							| 66 | 1 2 3 5 | metakunt2 | ⊢ ( 𝜑  →  𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 68 | 67 44 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐶 ‘ 𝑋 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 69 | 7 65 68 44 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) |