Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt12.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt12.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt12.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt12.4 |
⊢ 𝐴 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) |
5 |
|
metakunt12.5 |
⊢ 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) |
6 |
|
metakunt12.6 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
7 |
|
ioran |
⊢ ( ¬ ( 𝑋 = 𝑀 ∨ 𝑋 < 𝐼 ) ↔ ( ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ) |
8 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐴 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) ) |
9 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐶 ‘ 𝑋 ) → ( 𝑥 = 𝐼 ↔ ( 𝐶 ‘ 𝑋 ) = 𝐼 ) ) |
10 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐶 ‘ 𝑋 ) → ( 𝑥 < 𝐼 ↔ ( 𝐶 ‘ 𝑋 ) < 𝐼 ) ) |
11 |
|
id |
⊢ ( 𝑥 = ( 𝐶 ‘ 𝑋 ) → 𝑥 = ( 𝐶 ‘ 𝑋 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐶 ‘ 𝑋 ) → ( 𝑥 − 1 ) = ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) |
13 |
10 11 12
|
ifbieq12d |
⊢ ( 𝑥 = ( 𝐶 ‘ 𝑋 ) → if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) = if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) ) |
14 |
9 13
|
ifbieq2d |
⊢ ( 𝑥 = ( 𝐶 ‘ 𝑋 ) → if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) = if ( ( 𝐶 ‘ 𝑋 ) = 𝐼 , 𝑀 , if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝐶 ‘ 𝑋 ) ) → if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) = if ( ( 𝐶 ‘ 𝑋 ) = 𝐼 , 𝑀 , if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) ) ) |
16 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) ) |
17 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 = 𝑀 ↔ 𝑋 = 𝑀 ) ) |
18 |
|
breq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 < 𝐼 ↔ 𝑋 < 𝐼 ) ) |
19 |
|
id |
⊢ ( 𝑦 = 𝑋 → 𝑦 = 𝑋 ) |
20 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 + 1 ) = ( 𝑋 + 1 ) ) |
21 |
18 19 20
|
ifbieq12d |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) |
22 |
17 21
|
ifbieq2d |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) = if ( 𝑋 = 𝑀 , 𝐼 , if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑦 = 𝑋 ) → if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) = if ( 𝑋 = 𝑀 , 𝐼 , if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) ) |
24 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ¬ 𝑋 = 𝑀 ) |
25 |
|
iffalse |
⊢ ( ¬ 𝑋 = 𝑀 → if ( 𝑋 = 𝑀 , 𝐼 , if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) = if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝑀 , 𝐼 , if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) = if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) |
27 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ¬ 𝑋 < 𝐼 ) |
28 |
|
iffalse |
⊢ ( ¬ 𝑋 < 𝐼 → if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) = ( 𝑋 + 1 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) = ( 𝑋 + 1 ) ) |
30 |
26 29
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( 𝑋 = 𝑀 , 𝐼 , if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) = ( 𝑋 + 1 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑦 = 𝑋 ) → if ( 𝑋 = 𝑀 , 𝐼 , if ( 𝑋 < 𝐼 , 𝑋 , ( 𝑋 + 1 ) ) ) = ( 𝑋 + 1 ) ) |
32 |
23 31
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑦 = 𝑋 ) → if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) = ( 𝑋 + 1 ) ) |
33 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
34 |
6
|
elfzelzd |
⊢ ( 𝜑 → 𝑋 ∈ ℤ ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 ∈ ℤ ) |
36 |
35
|
peano2zd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝑋 + 1 ) ∈ ℤ ) |
37 |
16 32 33 36
|
fvmptd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) ) |
38 |
|
eqeq1 |
⊢ ( ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) → ( ( 𝐶 ‘ 𝑋 ) = 𝐼 ↔ ( 𝑋 + 1 ) = 𝐼 ) ) |
39 |
|
breq1 |
⊢ ( ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) → ( ( 𝐶 ‘ 𝑋 ) < 𝐼 ↔ ( 𝑋 + 1 ) < 𝐼 ) ) |
40 |
|
id |
⊢ ( ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) → ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) ) |
41 |
|
oveq1 |
⊢ ( ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) → ( ( 𝐶 ‘ 𝑋 ) − 1 ) = ( ( 𝑋 + 1 ) − 1 ) ) |
42 |
39 40 41
|
ifbieq12d |
⊢ ( ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) → if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) = if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) |
43 |
38 42
|
ifbieq2d |
⊢ ( ( 𝐶 ‘ 𝑋 ) = ( 𝑋 + 1 ) → if ( ( 𝐶 ‘ 𝑋 ) = 𝐼 , 𝑀 , if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) ) = if ( ( 𝑋 + 1 ) = 𝐼 , 𝑀 , if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) ) |
44 |
37 43
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( ( 𝐶 ‘ 𝑋 ) = 𝐼 , 𝑀 , if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) ) = if ( ( 𝑋 + 1 ) = 𝐼 , 𝑀 , if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) ) |
45 |
2
|
nnred |
⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
46 |
45
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ∈ ℝ ) |
47 |
35
|
zred |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 ∈ ℝ ) |
48 |
36
|
zred |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝑋 + 1 ) ∈ ℝ ) |
49 |
46 47
|
lenltd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐼 ≤ 𝑋 ↔ ¬ 𝑋 < 𝐼 ) ) |
50 |
27 49
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ≤ 𝑋 ) |
51 |
47
|
ltp1d |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 < ( 𝑋 + 1 ) ) |
52 |
46 47 48 50 51
|
lelttrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 < ( 𝑋 + 1 ) ) |
53 |
46 52
|
ltned |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ≠ ( 𝑋 + 1 ) ) |
54 |
53
|
necomd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝑋 + 1 ) ≠ 𝐼 ) |
55 |
54
|
neneqd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ¬ ( 𝑋 + 1 ) = 𝐼 ) |
56 |
|
iffalse |
⊢ ( ¬ ( 𝑋 + 1 ) = 𝐼 → if ( ( 𝑋 + 1 ) = 𝐼 , 𝑀 , if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) = if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) |
57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( ( 𝑋 + 1 ) = 𝐼 , 𝑀 , if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) = if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) |
58 |
47
|
lep1d |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 ≤ ( 𝑋 + 1 ) ) |
59 |
46 47 48 50 58
|
letrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐼 ≤ ( 𝑋 + 1 ) ) |
60 |
46 48
|
lenltd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐼 ≤ ( 𝑋 + 1 ) ↔ ¬ ( 𝑋 + 1 ) < 𝐼 ) ) |
61 |
59 60
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ¬ ( 𝑋 + 1 ) < 𝐼 ) |
62 |
|
iffalse |
⊢ ( ¬ ( 𝑋 + 1 ) < 𝐼 → if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) = ( ( 𝑋 + 1 ) − 1 ) ) |
63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) = ( ( 𝑋 + 1 ) − 1 ) ) |
64 |
35
|
zcnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝑋 ∈ ℂ ) |
65 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 1 ∈ ℂ ) |
66 |
64 65
|
pncand |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( ( 𝑋 + 1 ) − 1 ) = 𝑋 ) |
67 |
57 63 66
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( ( 𝑋 + 1 ) = 𝐼 , 𝑀 , if ( ( 𝑋 + 1 ) < 𝐼 , ( 𝑋 + 1 ) , ( ( 𝑋 + 1 ) − 1 ) ) ) = 𝑋 ) |
68 |
44 67
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → if ( ( 𝐶 ‘ 𝑋 ) = 𝐼 , 𝑀 , if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) ) = 𝑋 ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝐶 ‘ 𝑋 ) ) → if ( ( 𝐶 ‘ 𝑋 ) = 𝐼 , 𝑀 , if ( ( 𝐶 ‘ 𝑋 ) < 𝐼 , ( 𝐶 ‘ 𝑋 ) , ( ( 𝐶 ‘ 𝑋 ) − 1 ) ) ) = 𝑋 ) |
70 |
15 69
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ∧ 𝑥 = ( 𝐶 ‘ 𝑋 ) ) → if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) = 𝑋 ) |
71 |
1 2 3 5
|
metakunt2 |
⊢ ( 𝜑 → 𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
72 |
71
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → 𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
73 |
72 33
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐶 ‘ 𝑋 ) ∈ ( 1 ... 𝑀 ) ) |
74 |
8 70 73 33
|
fvmptd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) |
75 |
74
|
3expb |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑋 = 𝑀 ∧ ¬ 𝑋 < 𝐼 ) ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) |
76 |
7 75
|
sylan2b |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 = 𝑀 ∨ 𝑋 < 𝐼 ) ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) |