| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt12.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt12.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt12.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt12.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt12.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt12.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 |  | ioran |  |-  ( -. ( X = M \/ X < I ) <-> ( -. X = M /\ -. X < I ) ) | 
						
							| 8 | 4 | a1i |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) | 
						
							| 9 |  | eqeq1 |  |-  ( x = ( C ` X ) -> ( x = I <-> ( C ` X ) = I ) ) | 
						
							| 10 |  | breq1 |  |-  ( x = ( C ` X ) -> ( x < I <-> ( C ` X ) < I ) ) | 
						
							| 11 |  | id |  |-  ( x = ( C ` X ) -> x = ( C ` X ) ) | 
						
							| 12 |  | oveq1 |  |-  ( x = ( C ` X ) -> ( x - 1 ) = ( ( C ` X ) - 1 ) ) | 
						
							| 13 | 10 11 12 | ifbieq12d |  |-  ( x = ( C ` X ) -> if ( x < I , x , ( x - 1 ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) | 
						
							| 14 | 9 13 | ifbieq2d |  |-  ( x = ( C ` X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( ph /\ -. X = M /\ -. X < I ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) | 
						
							| 16 | 5 | a1i |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) | 
						
							| 17 |  | eqeq1 |  |-  ( y = X -> ( y = M <-> X = M ) ) | 
						
							| 18 |  | breq1 |  |-  ( y = X -> ( y < I <-> X < I ) ) | 
						
							| 19 |  | id |  |-  ( y = X -> y = X ) | 
						
							| 20 |  | oveq1 |  |-  ( y = X -> ( y + 1 ) = ( X + 1 ) ) | 
						
							| 21 | 18 19 20 | ifbieq12d |  |-  ( y = X -> if ( y < I , y , ( y + 1 ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 22 | 17 21 | ifbieq2d |  |-  ( y = X -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ -. X = M /\ -. X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) | 
						
							| 24 |  | simp2 |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> -. X = M ) | 
						
							| 25 |  | iffalse |  |-  ( -. X = M -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) | 
						
							| 27 |  | simp3 |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> -. X < I ) | 
						
							| 28 |  | iffalse |  |-  ( -. X < I -> if ( X < I , X , ( X + 1 ) ) = ( X + 1 ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( X < I , X , ( X + 1 ) ) = ( X + 1 ) ) | 
						
							| 30 | 26 29 | eqtrd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = ( X + 1 ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ph /\ -. X = M /\ -. X < I ) /\ y = X ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = ( X + 1 ) ) | 
						
							| 32 | 23 31 | eqtrd |  |-  ( ( ( ph /\ -. X = M /\ -. X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = ( X + 1 ) ) | 
						
							| 33 | 6 | 3ad2ant1 |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> X e. ( 1 ... M ) ) | 
						
							| 34 | 6 | elfzelzd |  |-  ( ph -> X e. ZZ ) | 
						
							| 35 | 34 | 3ad2ant1 |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> X e. ZZ ) | 
						
							| 36 | 35 | peano2zd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( X + 1 ) e. ZZ ) | 
						
							| 37 | 16 32 33 36 | fvmptd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( C ` X ) = ( X + 1 ) ) | 
						
							| 38 |  | eqeq1 |  |-  ( ( C ` X ) = ( X + 1 ) -> ( ( C ` X ) = I <-> ( X + 1 ) = I ) ) | 
						
							| 39 |  | breq1 |  |-  ( ( C ` X ) = ( X + 1 ) -> ( ( C ` X ) < I <-> ( X + 1 ) < I ) ) | 
						
							| 40 |  | id |  |-  ( ( C ` X ) = ( X + 1 ) -> ( C ` X ) = ( X + 1 ) ) | 
						
							| 41 |  | oveq1 |  |-  ( ( C ` X ) = ( X + 1 ) -> ( ( C ` X ) - 1 ) = ( ( X + 1 ) - 1 ) ) | 
						
							| 42 | 39 40 41 | ifbieq12d |  |-  ( ( C ` X ) = ( X + 1 ) -> if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) = if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) | 
						
							| 43 | 38 42 | ifbieq2d |  |-  ( ( C ` X ) = ( X + 1 ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) ) | 
						
							| 44 | 37 43 | syl |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) ) | 
						
							| 45 | 2 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 46 | 45 | 3ad2ant1 |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> I e. RR ) | 
						
							| 47 | 35 | zred |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> X e. RR ) | 
						
							| 48 | 36 | zred |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( X + 1 ) e. RR ) | 
						
							| 49 | 46 47 | lenltd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( I <_ X <-> -. X < I ) ) | 
						
							| 50 | 27 49 | mpbird |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> I <_ X ) | 
						
							| 51 | 47 | ltp1d |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> X < ( X + 1 ) ) | 
						
							| 52 | 46 47 48 50 51 | lelttrd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> I < ( X + 1 ) ) | 
						
							| 53 | 46 52 | ltned |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> I =/= ( X + 1 ) ) | 
						
							| 54 | 53 | necomd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( X + 1 ) =/= I ) | 
						
							| 55 | 54 | neneqd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> -. ( X + 1 ) = I ) | 
						
							| 56 |  | iffalse |  |-  ( -. ( X + 1 ) = I -> if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) = if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) = if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) | 
						
							| 58 | 47 | lep1d |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> X <_ ( X + 1 ) ) | 
						
							| 59 | 46 47 48 50 58 | letrd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> I <_ ( X + 1 ) ) | 
						
							| 60 | 46 48 | lenltd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( I <_ ( X + 1 ) <-> -. ( X + 1 ) < I ) ) | 
						
							| 61 | 59 60 | mpbid |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> -. ( X + 1 ) < I ) | 
						
							| 62 |  | iffalse |  |-  ( -. ( X + 1 ) < I -> if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) = ( ( X + 1 ) - 1 ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) = ( ( X + 1 ) - 1 ) ) | 
						
							| 64 | 35 | zcnd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> X e. CC ) | 
						
							| 65 |  | 1cnd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> 1 e. CC ) | 
						
							| 66 | 64 65 | pncand |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( ( X + 1 ) - 1 ) = X ) | 
						
							| 67 | 57 63 66 | 3eqtrd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) = X ) | 
						
							| 68 | 44 67 | eqtrd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ( ph /\ -. X = M /\ -. X < I ) /\ x = ( C ` X ) ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) | 
						
							| 70 | 15 69 | eqtrd |  |-  ( ( ( ph /\ -. X = M /\ -. X < I ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = X ) | 
						
							| 71 | 1 2 3 5 | metakunt2 |  |-  ( ph -> C : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 72 | 71 | 3ad2ant1 |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> C : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 73 | 72 33 | ffvelcdmd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( C ` X ) e. ( 1 ... M ) ) | 
						
							| 74 | 8 70 73 33 | fvmptd |  |-  ( ( ph /\ -. X = M /\ -. X < I ) -> ( A ` ( C ` X ) ) = X ) | 
						
							| 75 | 74 | 3expb |  |-  ( ( ph /\ ( -. X = M /\ -. X < I ) ) -> ( A ` ( C ` X ) ) = X ) | 
						
							| 76 | 7 75 | sylan2b |  |-  ( ( ph /\ -. ( X = M \/ X < I ) ) -> ( A ` ( C ` X ) ) = X ) |