Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt12.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt12.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt12.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt12.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
5 |
|
metakunt12.5 |
|- C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) |
6 |
|
metakunt12.6 |
|- ( ph -> X e. ( 1 ... M ) ) |
7 |
|
ioran |
|- ( -. ( X = M \/ X < I ) <-> ( -. X = M /\ -. X < I ) ) |
8 |
4
|
a1i |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) ) |
9 |
|
eqeq1 |
|- ( x = ( C ` X ) -> ( x = I <-> ( C ` X ) = I ) ) |
10 |
|
breq1 |
|- ( x = ( C ` X ) -> ( x < I <-> ( C ` X ) < I ) ) |
11 |
|
id |
|- ( x = ( C ` X ) -> x = ( C ` X ) ) |
12 |
|
oveq1 |
|- ( x = ( C ` X ) -> ( x - 1 ) = ( ( C ` X ) - 1 ) ) |
13 |
10 11 12
|
ifbieq12d |
|- ( x = ( C ` X ) -> if ( x < I , x , ( x - 1 ) ) = if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) |
14 |
9 13
|
ifbieq2d |
|- ( x = ( C ` X ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) |
15 |
14
|
adantl |
|- ( ( ( ph /\ -. X = M /\ -. X < I ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) ) |
16 |
5
|
a1i |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) ) |
17 |
|
eqeq1 |
|- ( y = X -> ( y = M <-> X = M ) ) |
18 |
|
breq1 |
|- ( y = X -> ( y < I <-> X < I ) ) |
19 |
|
id |
|- ( y = X -> y = X ) |
20 |
|
oveq1 |
|- ( y = X -> ( y + 1 ) = ( X + 1 ) ) |
21 |
18 19 20
|
ifbieq12d |
|- ( y = X -> if ( y < I , y , ( y + 1 ) ) = if ( X < I , X , ( X + 1 ) ) ) |
22 |
17 21
|
ifbieq2d |
|- ( y = X -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ -. X = M /\ -. X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) ) |
24 |
|
simp2 |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> -. X = M ) |
25 |
|
iffalse |
|- ( -. X = M -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) |
26 |
24 25
|
syl |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = if ( X < I , X , ( X + 1 ) ) ) |
27 |
|
simp3 |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> -. X < I ) |
28 |
|
iffalse |
|- ( -. X < I -> if ( X < I , X , ( X + 1 ) ) = ( X + 1 ) ) |
29 |
27 28
|
syl |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( X < I , X , ( X + 1 ) ) = ( X + 1 ) ) |
30 |
26 29
|
eqtrd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = ( X + 1 ) ) |
31 |
30
|
adantr |
|- ( ( ( ph /\ -. X = M /\ -. X < I ) /\ y = X ) -> if ( X = M , I , if ( X < I , X , ( X + 1 ) ) ) = ( X + 1 ) ) |
32 |
23 31
|
eqtrd |
|- ( ( ( ph /\ -. X = M /\ -. X < I ) /\ y = X ) -> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) = ( X + 1 ) ) |
33 |
6
|
3ad2ant1 |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> X e. ( 1 ... M ) ) |
34 |
6
|
elfzelzd |
|- ( ph -> X e. ZZ ) |
35 |
34
|
3ad2ant1 |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> X e. ZZ ) |
36 |
35
|
peano2zd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( X + 1 ) e. ZZ ) |
37 |
16 32 33 36
|
fvmptd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( C ` X ) = ( X + 1 ) ) |
38 |
|
eqeq1 |
|- ( ( C ` X ) = ( X + 1 ) -> ( ( C ` X ) = I <-> ( X + 1 ) = I ) ) |
39 |
|
breq1 |
|- ( ( C ` X ) = ( X + 1 ) -> ( ( C ` X ) < I <-> ( X + 1 ) < I ) ) |
40 |
|
id |
|- ( ( C ` X ) = ( X + 1 ) -> ( C ` X ) = ( X + 1 ) ) |
41 |
|
oveq1 |
|- ( ( C ` X ) = ( X + 1 ) -> ( ( C ` X ) - 1 ) = ( ( X + 1 ) - 1 ) ) |
42 |
39 40 41
|
ifbieq12d |
|- ( ( C ` X ) = ( X + 1 ) -> if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) = if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) |
43 |
38 42
|
ifbieq2d |
|- ( ( C ` X ) = ( X + 1 ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) ) |
44 |
37 43
|
syl |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) ) |
45 |
2
|
nnred |
|- ( ph -> I e. RR ) |
46 |
45
|
3ad2ant1 |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> I e. RR ) |
47 |
35
|
zred |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> X e. RR ) |
48 |
36
|
zred |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( X + 1 ) e. RR ) |
49 |
46 47
|
lenltd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( I <_ X <-> -. X < I ) ) |
50 |
27 49
|
mpbird |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> I <_ X ) |
51 |
47
|
ltp1d |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> X < ( X + 1 ) ) |
52 |
46 47 48 50 51
|
lelttrd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> I < ( X + 1 ) ) |
53 |
46 52
|
ltned |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> I =/= ( X + 1 ) ) |
54 |
53
|
necomd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( X + 1 ) =/= I ) |
55 |
54
|
neneqd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> -. ( X + 1 ) = I ) |
56 |
|
iffalse |
|- ( -. ( X + 1 ) = I -> if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) = if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) |
57 |
55 56
|
syl |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) = if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) |
58 |
47
|
lep1d |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> X <_ ( X + 1 ) ) |
59 |
46 47 48 50 58
|
letrd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> I <_ ( X + 1 ) ) |
60 |
46 48
|
lenltd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( I <_ ( X + 1 ) <-> -. ( X + 1 ) < I ) ) |
61 |
59 60
|
mpbid |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> -. ( X + 1 ) < I ) |
62 |
|
iffalse |
|- ( -. ( X + 1 ) < I -> if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) = ( ( X + 1 ) - 1 ) ) |
63 |
61 62
|
syl |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) = ( ( X + 1 ) - 1 ) ) |
64 |
35
|
zcnd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> X e. CC ) |
65 |
|
1cnd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> 1 e. CC ) |
66 |
64 65
|
pncand |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( ( X + 1 ) - 1 ) = X ) |
67 |
57 63 66
|
3eqtrd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( X + 1 ) = I , M , if ( ( X + 1 ) < I , ( X + 1 ) , ( ( X + 1 ) - 1 ) ) ) = X ) |
68 |
44 67
|
eqtrd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) |
69 |
68
|
adantr |
|- ( ( ( ph /\ -. X = M /\ -. X < I ) /\ x = ( C ` X ) ) -> if ( ( C ` X ) = I , M , if ( ( C ` X ) < I , ( C ` X ) , ( ( C ` X ) - 1 ) ) ) = X ) |
70 |
15 69
|
eqtrd |
|- ( ( ( ph /\ -. X = M /\ -. X < I ) /\ x = ( C ` X ) ) -> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) = X ) |
71 |
1 2 3 5
|
metakunt2 |
|- ( ph -> C : ( 1 ... M ) --> ( 1 ... M ) ) |
72 |
71
|
3ad2ant1 |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> C : ( 1 ... M ) --> ( 1 ... M ) ) |
73 |
72 33
|
ffvelrnd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( C ` X ) e. ( 1 ... M ) ) |
74 |
8 70 73 33
|
fvmptd |
|- ( ( ph /\ -. X = M /\ -. X < I ) -> ( A ` ( C ` X ) ) = X ) |
75 |
74
|
3expb |
|- ( ( ph /\ ( -. X = M /\ -. X < I ) ) -> ( A ` ( C ` X ) ) = X ) |
76 |
7 75
|
sylan2b |
|- ( ( ph /\ -. ( X = M \/ X < I ) ) -> ( A ` ( C ` X ) ) = X ) |