Metamath Proof Explorer


Theorem metakunt12

Description: C is the right inverse for A. (Contributed by metakunt, 25-May-2024)

Ref Expression
Hypotheses metakunt12.1 φ M
metakunt12.2 φ I
metakunt12.3 φ I M
metakunt12.4 A = x 1 M if x = I M if x < I x x 1
metakunt12.5 C = y 1 M if y = M I if y < I y y + 1
metakunt12.6 φ X 1 M
Assertion metakunt12 φ ¬ X = M X < I A C X = X

Proof

Step Hyp Ref Expression
1 metakunt12.1 φ M
2 metakunt12.2 φ I
3 metakunt12.3 φ I M
4 metakunt12.4 A = x 1 M if x = I M if x < I x x 1
5 metakunt12.5 C = y 1 M if y = M I if y < I y y + 1
6 metakunt12.6 φ X 1 M
7 ioran ¬ X = M X < I ¬ X = M ¬ X < I
8 4 a1i φ ¬ X = M ¬ X < I A = x 1 M if x = I M if x < I x x 1
9 eqeq1 x = C X x = I C X = I
10 breq1 x = C X x < I C X < I
11 id x = C X x = C X
12 oveq1 x = C X x 1 = C X 1
13 10 11 12 ifbieq12d x = C X if x < I x x 1 = if C X < I C X C X 1
14 9 13 ifbieq2d x = C X if x = I M if x < I x x 1 = if C X = I M if C X < I C X C X 1
15 14 adantl φ ¬ X = M ¬ X < I x = C X if x = I M if x < I x x 1 = if C X = I M if C X < I C X C X 1
16 5 a1i φ ¬ X = M ¬ X < I C = y 1 M if y = M I if y < I y y + 1
17 eqeq1 y = X y = M X = M
18 breq1 y = X y < I X < I
19 id y = X y = X
20 oveq1 y = X y + 1 = X + 1
21 18 19 20 ifbieq12d y = X if y < I y y + 1 = if X < I X X + 1
22 17 21 ifbieq2d y = X if y = M I if y < I y y + 1 = if X = M I if X < I X X + 1
23 22 adantl φ ¬ X = M ¬ X < I y = X if y = M I if y < I y y + 1 = if X = M I if X < I X X + 1
24 simp2 φ ¬ X = M ¬ X < I ¬ X = M
25 iffalse ¬ X = M if X = M I if X < I X X + 1 = if X < I X X + 1
26 24 25 syl φ ¬ X = M ¬ X < I if X = M I if X < I X X + 1 = if X < I X X + 1
27 simp3 φ ¬ X = M ¬ X < I ¬ X < I
28 iffalse ¬ X < I if X < I X X + 1 = X + 1
29 27 28 syl φ ¬ X = M ¬ X < I if X < I X X + 1 = X + 1
30 26 29 eqtrd φ ¬ X = M ¬ X < I if X = M I if X < I X X + 1 = X + 1
31 30 adantr φ ¬ X = M ¬ X < I y = X if X = M I if X < I X X + 1 = X + 1
32 23 31 eqtrd φ ¬ X = M ¬ X < I y = X if y = M I if y < I y y + 1 = X + 1
33 6 3ad2ant1 φ ¬ X = M ¬ X < I X 1 M
34 elfznn X 1 M X
35 6 34 syl φ X
36 35 nnzd φ X
37 36 3ad2ant1 φ ¬ X = M ¬ X < I X
38 37 peano2zd φ ¬ X = M ¬ X < I X + 1
39 16 32 33 38 fvmptd φ ¬ X = M ¬ X < I C X = X + 1
40 eqeq1 C X = X + 1 C X = I X + 1 = I
41 breq1 C X = X + 1 C X < I X + 1 < I
42 id C X = X + 1 C X = X + 1
43 oveq1 C X = X + 1 C X 1 = X + 1 - 1
44 41 42 43 ifbieq12d C X = X + 1 if C X < I C X C X 1 = if X + 1 < I X + 1 X + 1 - 1
45 40 44 ifbieq2d C X = X + 1 if C X = I M if C X < I C X C X 1 = if X + 1 = I M if X + 1 < I X + 1 X + 1 - 1
46 39 45 syl φ ¬ X = M ¬ X < I if C X = I M if C X < I C X C X 1 = if X + 1 = I M if X + 1 < I X + 1 X + 1 - 1
47 2 nnred φ I
48 47 3ad2ant1 φ ¬ X = M ¬ X < I I
49 37 zred φ ¬ X = M ¬ X < I X
50 38 zred φ ¬ X = M ¬ X < I X + 1
51 48 49 lenltd φ ¬ X = M ¬ X < I I X ¬ X < I
52 27 51 mpbird φ ¬ X = M ¬ X < I I X
53 49 ltp1d φ ¬ X = M ¬ X < I X < X + 1
54 48 49 50 52 53 lelttrd φ ¬ X = M ¬ X < I I < X + 1
55 48 54 ltned φ ¬ X = M ¬ X < I I X + 1
56 55 necomd φ ¬ X = M ¬ X < I X + 1 I
57 56 neneqd φ ¬ X = M ¬ X < I ¬ X + 1 = I
58 iffalse ¬ X + 1 = I if X + 1 = I M if X + 1 < I X + 1 X + 1 - 1 = if X + 1 < I X + 1 X + 1 - 1
59 57 58 syl φ ¬ X = M ¬ X < I if X + 1 = I M if X + 1 < I X + 1 X + 1 - 1 = if X + 1 < I X + 1 X + 1 - 1
60 49 lep1d φ ¬ X = M ¬ X < I X X + 1
61 48 49 50 52 60 letrd φ ¬ X = M ¬ X < I I X + 1
62 48 50 lenltd φ ¬ X = M ¬ X < I I X + 1 ¬ X + 1 < I
63 61 62 mpbid φ ¬ X = M ¬ X < I ¬ X + 1 < I
64 iffalse ¬ X + 1 < I if X + 1 < I X + 1 X + 1 - 1 = X + 1 - 1
65 63 64 syl φ ¬ X = M ¬ X < I if X + 1 < I X + 1 X + 1 - 1 = X + 1 - 1
66 37 zcnd φ ¬ X = M ¬ X < I X
67 1cnd φ ¬ X = M ¬ X < I 1
68 66 67 pncand φ ¬ X = M ¬ X < I X + 1 - 1 = X
69 59 65 68 3eqtrd φ ¬ X = M ¬ X < I if X + 1 = I M if X + 1 < I X + 1 X + 1 - 1 = X
70 46 69 eqtrd φ ¬ X = M ¬ X < I if C X = I M if C X < I C X C X 1 = X
71 70 adantr φ ¬ X = M ¬ X < I x = C X if C X = I M if C X < I C X C X 1 = X
72 15 71 eqtrd φ ¬ X = M ¬ X < I x = C X if x = I M if x < I x x 1 = X
73 1 2 3 5 metakunt2 φ C : 1 M 1 M
74 73 3ad2ant1 φ ¬ X = M ¬ X < I C : 1 M 1 M
75 74 33 ffvelrnd φ ¬ X = M ¬ X < I C X 1 M
76 8 72 75 33 fvmptd φ ¬ X = M ¬ X < I A C X = X
77 76 3expb φ ¬ X = M ¬ X < I A C X = X
78 7 77 sylan2b φ ¬ X = M X < I A C X = X