Metamath Proof Explorer


Theorem metakunt13

Description: C is the right inverse for A. (Contributed by metakunt, 25-May-2024)

Ref Expression
Hypotheses metakunt13.1 φM
metakunt13.2 φI
metakunt13.3 φIM
metakunt13.4 A=x1Mifx=IMifx<Ixx1
metakunt13.5 C=y1Mify=MIify<Iyy+1
metakunt13.6 φX1M
Assertion metakunt13 φACX=X

Proof

Step Hyp Ref Expression
1 metakunt13.1 φM
2 metakunt13.2 φI
3 metakunt13.3 φIM
4 metakunt13.4 A=x1Mifx=IMifx<Ixx1
5 metakunt13.5 C=y1Mify=MIify<Iyy+1
6 metakunt13.6 φX1M
7 1 2 3 4 5 6 metakunt10 φX=MACX=X
8 7 ex φX=MACX=X
9 1 2 3 4 5 6 metakunt11 φX<IACX=X
10 9 ex φX<IACX=X
11 1 2 3 4 5 6 metakunt12 φ¬X=MX<IACX=X
12 11 ex φ¬X=MX<IACX=X
13 8 10 12 ecase3d φACX=X