| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt13.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt13.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt13.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt13.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt13.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt13.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 1 2 3 4 5 6 | metakunt10 | ⊢ ( ( 𝜑  ∧  𝑋  =  𝑀 )  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝜑  →  ( 𝑋  =  𝑀  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) ) | 
						
							| 9 | 1 2 3 4 5 6 | metakunt11 | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝜑  →  ( 𝑋  <  𝐼  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) ) | 
						
							| 11 | 1 2 3 4 5 6 | metakunt12 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑋  =  𝑀  ∨  𝑋  <  𝐼 ) )  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝜑  →  ( ¬  ( 𝑋  =  𝑀  ∨  𝑋  <  𝐼 )  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) ) | 
						
							| 13 | 8 10 12 | ecase3d | ⊢ ( 𝜑  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) )  =  𝑋 ) |