Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt13.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt13.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt13.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt13.4 |
⊢ 𝐴 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) |
5 |
|
metakunt13.5 |
⊢ 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) |
6 |
|
metakunt13.6 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
7 |
1 2 3 4 5 6
|
metakunt10 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑀 ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) |
8 |
7
|
ex |
⊢ ( 𝜑 → ( 𝑋 = 𝑀 → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) ) |
9 |
1 2 3 4 5 6
|
metakunt11 |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐼 ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) |
10 |
9
|
ex |
⊢ ( 𝜑 → ( 𝑋 < 𝐼 → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) ) |
11 |
1 2 3 4 5 6
|
metakunt12 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 = 𝑀 ∨ 𝑋 < 𝐼 ) ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) |
12 |
11
|
ex |
⊢ ( 𝜑 → ( ¬ ( 𝑋 = 𝑀 ∨ 𝑋 < 𝐼 ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) ) |
13 |
8 10 12
|
ecase3d |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 𝐶 ‘ 𝑋 ) ) = 𝑋 ) |