Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt13.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt13.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt13.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt13.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
5 |
|
metakunt13.5 |
|- C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) |
6 |
|
metakunt13.6 |
|- ( ph -> X e. ( 1 ... M ) ) |
7 |
1 2 3 4 5 6
|
metakunt10 |
|- ( ( ph /\ X = M ) -> ( A ` ( C ` X ) ) = X ) |
8 |
7
|
ex |
|- ( ph -> ( X = M -> ( A ` ( C ` X ) ) = X ) ) |
9 |
1 2 3 4 5 6
|
metakunt11 |
|- ( ( ph /\ X < I ) -> ( A ` ( C ` X ) ) = X ) |
10 |
9
|
ex |
|- ( ph -> ( X < I -> ( A ` ( C ` X ) ) = X ) ) |
11 |
1 2 3 4 5 6
|
metakunt12 |
|- ( ( ph /\ -. ( X = M \/ X < I ) ) -> ( A ` ( C ` X ) ) = X ) |
12 |
11
|
ex |
|- ( ph -> ( -. ( X = M \/ X < I ) -> ( A ` ( C ` X ) ) = X ) ) |
13 |
8 10 12
|
ecase3d |
|- ( ph -> ( A ` ( C ` X ) ) = X ) |