| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt13.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt13.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt13.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt13.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt13.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 |  | metakunt13.6 |  |-  ( ph -> X e. ( 1 ... M ) ) | 
						
							| 7 | 1 2 3 4 5 6 | metakunt10 |  |-  ( ( ph /\ X = M ) -> ( A ` ( C ` X ) ) = X ) | 
						
							| 8 | 7 | ex |  |-  ( ph -> ( X = M -> ( A ` ( C ` X ) ) = X ) ) | 
						
							| 9 | 1 2 3 4 5 6 | metakunt11 |  |-  ( ( ph /\ X < I ) -> ( A ` ( C ` X ) ) = X ) | 
						
							| 10 | 9 | ex |  |-  ( ph -> ( X < I -> ( A ` ( C ` X ) ) = X ) ) | 
						
							| 11 | 1 2 3 4 5 6 | metakunt12 |  |-  ( ( ph /\ -. ( X = M \/ X < I ) ) -> ( A ` ( C ` X ) ) = X ) | 
						
							| 12 | 11 | ex |  |-  ( ph -> ( -. ( X = M \/ X < I ) -> ( A ` ( C ` X ) ) = X ) ) | 
						
							| 13 | 8 10 12 | ecase3d |  |-  ( ph -> ( A ` ( C ` X ) ) = X ) |