Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt14.1 |
|- ( ph -> M e. NN ) |
2 |
|
metakunt14.2 |
|- ( ph -> I e. NN ) |
3 |
|
metakunt14.3 |
|- ( ph -> I <_ M ) |
4 |
|
metakunt14.4 |
|- A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) |
5 |
|
metakunt14.5 |
|- C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) |
6 |
1 2 3 4
|
metakunt1 |
|- ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) |
7 |
1 2 3 5
|
metakunt2 |
|- ( ph -> C : ( 1 ... M ) --> ( 1 ... M ) ) |
8 |
1
|
adantr |
|- ( ( ph /\ a e. ( 1 ... M ) ) -> M e. NN ) |
9 |
2
|
adantr |
|- ( ( ph /\ a e. ( 1 ... M ) ) -> I e. NN ) |
10 |
3
|
adantr |
|- ( ( ph /\ a e. ( 1 ... M ) ) -> I <_ M ) |
11 |
|
simpr |
|- ( ( ph /\ a e. ( 1 ... M ) ) -> a e. ( 1 ... M ) ) |
12 |
8 9 10 4 5 11
|
metakunt9 |
|- ( ( ph /\ a e. ( 1 ... M ) ) -> ( C ` ( A ` a ) ) = a ) |
13 |
12
|
ralrimiva |
|- ( ph -> A. a e. ( 1 ... M ) ( C ` ( A ` a ) ) = a ) |
14 |
1
|
adantr |
|- ( ( ph /\ b e. ( 1 ... M ) ) -> M e. NN ) |
15 |
2
|
adantr |
|- ( ( ph /\ b e. ( 1 ... M ) ) -> I e. NN ) |
16 |
3
|
adantr |
|- ( ( ph /\ b e. ( 1 ... M ) ) -> I <_ M ) |
17 |
|
simpr |
|- ( ( ph /\ b e. ( 1 ... M ) ) -> b e. ( 1 ... M ) ) |
18 |
14 15 16 4 5 17
|
metakunt13 |
|- ( ( ph /\ b e. ( 1 ... M ) ) -> ( A ` ( C ` b ) ) = b ) |
19 |
18
|
ralrimiva |
|- ( ph -> A. b e. ( 1 ... M ) ( A ` ( C ` b ) ) = b ) |
20 |
6 7 13 19
|
2fvidf1od |
|- ( ph -> A : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
21 |
6 7 13 19
|
2fvidinvd |
|- ( ph -> `' A = C ) |
22 |
20 21
|
jca |
|- ( ph -> ( A : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) /\ `' A = C ) ) |