| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt14.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | metakunt14.2 |  |-  ( ph -> I e. NN ) | 
						
							| 3 |  | metakunt14.3 |  |-  ( ph -> I <_ M ) | 
						
							| 4 |  | metakunt14.4 |  |-  A = ( x e. ( 1 ... M ) |-> if ( x = I , M , if ( x < I , x , ( x - 1 ) ) ) ) | 
						
							| 5 |  | metakunt14.5 |  |-  C = ( y e. ( 1 ... M ) |-> if ( y = M , I , if ( y < I , y , ( y + 1 ) ) ) ) | 
						
							| 6 | 1 2 3 4 | metakunt1 |  |-  ( ph -> A : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 7 | 1 2 3 5 | metakunt2 |  |-  ( ph -> C : ( 1 ... M ) --> ( 1 ... M ) ) | 
						
							| 8 | 1 | adantr |  |-  ( ( ph /\ a e. ( 1 ... M ) ) -> M e. NN ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ a e. ( 1 ... M ) ) -> I e. NN ) | 
						
							| 10 | 3 | adantr |  |-  ( ( ph /\ a e. ( 1 ... M ) ) -> I <_ M ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ a e. ( 1 ... M ) ) -> a e. ( 1 ... M ) ) | 
						
							| 12 | 8 9 10 4 5 11 | metakunt9 |  |-  ( ( ph /\ a e. ( 1 ... M ) ) -> ( C ` ( A ` a ) ) = a ) | 
						
							| 13 | 12 | ralrimiva |  |-  ( ph -> A. a e. ( 1 ... M ) ( C ` ( A ` a ) ) = a ) | 
						
							| 14 | 1 | adantr |  |-  ( ( ph /\ b e. ( 1 ... M ) ) -> M e. NN ) | 
						
							| 15 | 2 | adantr |  |-  ( ( ph /\ b e. ( 1 ... M ) ) -> I e. NN ) | 
						
							| 16 | 3 | adantr |  |-  ( ( ph /\ b e. ( 1 ... M ) ) -> I <_ M ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ b e. ( 1 ... M ) ) -> b e. ( 1 ... M ) ) | 
						
							| 18 | 14 15 16 4 5 17 | metakunt13 |  |-  ( ( ph /\ b e. ( 1 ... M ) ) -> ( A ` ( C ` b ) ) = b ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( ph -> A. b e. ( 1 ... M ) ( A ` ( C ` b ) ) = b ) | 
						
							| 20 | 6 7 13 19 | 2fvidf1od |  |-  ( ph -> A : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) | 
						
							| 21 | 6 7 13 19 | 2fvidinvd |  |-  ( ph -> `' A = C ) | 
						
							| 22 | 20 21 | jca |  |-  ( ph -> ( A : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) /\ `' A = C ) ) |