| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt14.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt14.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt14.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt14.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt14.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 | 1 2 3 4 | metakunt1 | ⊢ ( 𝜑  →  𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 7 | 1 2 3 5 | metakunt2 | ⊢ ( 𝜑  →  𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ∈  ℕ ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ≤  𝑀 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  𝑎  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 12 | 8 9 10 4 5 11 | metakunt9 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑎 ) )  =  𝑎 ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 1 ... 𝑀 ) ( 𝐶 ‘ ( 𝐴 ‘ 𝑎 ) )  =  𝑎 ) | 
						
							| 14 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 1 ... 𝑀 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 15 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ∈  ℕ ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 1 ... 𝑀 ) )  →  𝐼  ≤  𝑀 ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 1 ... 𝑀 ) )  →  𝑏  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 18 | 14 15 16 4 5 17 | metakunt13 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐴 ‘ ( 𝐶 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... 𝑀 ) ( 𝐴 ‘ ( 𝐶 ‘ 𝑏 ) )  =  𝑏 ) | 
						
							| 20 | 6 7 13 19 | 2fvidf1od | ⊢ ( 𝜑  →  𝐴 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | 
						
							| 21 | 6 7 13 19 | 2fvidinvd | ⊢ ( 𝜑  →  ◡ 𝐴  =  𝐶 ) | 
						
							| 22 | 20 21 | jca | ⊢ ( 𝜑  →  ( 𝐴 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  ∧  ◡ 𝐴  =  𝐶 ) ) |