Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt14.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt14.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt14.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt14.4 |
⊢ 𝐴 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) |
5 |
|
metakunt14.5 |
⊢ 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) |
6 |
1 2 3 4
|
metakunt1 |
⊢ ( 𝜑 → 𝐴 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
7 |
1 2 3 5
|
metakunt2 |
⊢ ( 𝜑 → 𝐶 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → 𝐼 ∈ ℕ ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → 𝐼 ≤ 𝑀 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → 𝑎 ∈ ( 1 ... 𝑀 ) ) |
12 |
8 9 10 4 5 11
|
metakunt9 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 1 ... 𝑀 ) ) → ( 𝐶 ‘ ( 𝐴 ‘ 𝑎 ) ) = 𝑎 ) |
13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 1 ... 𝑀 ) ( 𝐶 ‘ ( 𝐴 ‘ 𝑎 ) ) = 𝑎 ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑀 ) ) → 𝐼 ∈ ℕ ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑀 ) ) → 𝐼 ≤ 𝑀 ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑀 ) ) → 𝑏 ∈ ( 1 ... 𝑀 ) ) |
18 |
14 15 16 4 5 17
|
metakunt13 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 ‘ ( 𝐶 ‘ 𝑏 ) ) = 𝑏 ) |
19 |
18
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... 𝑀 ) ( 𝐴 ‘ ( 𝐶 ‘ 𝑏 ) ) = 𝑏 ) |
20 |
6 7 13 19
|
2fvidf1od |
⊢ ( 𝜑 → 𝐴 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
21 |
6 7 13 19
|
2fvidinvd |
⊢ ( 𝜑 → ◡ 𝐴 = 𝐶 ) |
22 |
20 21
|
jca |
⊢ ( 𝜑 → ( 𝐴 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ∧ ◡ 𝐴 = 𝐶 ) ) |