Step |
Hyp |
Ref |
Expression |
1 |
|
metakunt9.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
metakunt9.2 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
3 |
|
metakunt9.3 |
⊢ ( 𝜑 → 𝐼 ≤ 𝑀 ) |
4 |
|
metakunt9.4 |
⊢ 𝐴 = ( 𝑥 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑥 = 𝐼 , 𝑀 , if ( 𝑥 < 𝐼 , 𝑥 , ( 𝑥 − 1 ) ) ) ) |
5 |
|
metakunt9.5 |
⊢ 𝐶 = ( 𝑦 ∈ ( 1 ... 𝑀 ) ↦ if ( 𝑦 = 𝑀 , 𝐼 , if ( 𝑦 < 𝐼 , 𝑦 , ( 𝑦 + 1 ) ) ) ) |
6 |
|
metakunt9.6 |
⊢ ( 𝜑 → 𝑋 ∈ ( 1 ... 𝑀 ) ) |
7 |
1 2 3 4 5 6
|
metakunt8 |
⊢ ( ( 𝜑 ∧ 𝐼 < 𝑋 ) → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) |
8 |
|
elfznn |
⊢ ( 𝑋 ∈ ( 1 ... 𝑀 ) → 𝑋 ∈ ℕ ) |
9 |
6 8
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℕ ) |
10 |
9
|
nnred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
11 |
2
|
nnred |
⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
12 |
10 11
|
leloed |
⊢ ( 𝜑 → ( 𝑋 ≤ 𝐼 ↔ ( 𝑋 < 𝐼 ∨ 𝑋 = 𝐼 ) ) ) |
13 |
1 2 3 4 5 6
|
metakunt6 |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝐼 ) → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) |
14 |
1 2 3 4 5 6
|
metakunt5 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐼 ) → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) |
15 |
13 14
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑋 < 𝐼 ∨ 𝑋 = 𝐼 ) ) → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( ( 𝑋 < 𝐼 ∨ 𝑋 = 𝐼 ) → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) ) |
17 |
12 16
|
sylbid |
⊢ ( 𝜑 → ( 𝑋 ≤ 𝐼 → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) ) |
18 |
17
|
imp |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝐼 ) → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) |
19 |
7 18 11 10
|
ltlecasei |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) ) = 𝑋 ) |