| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metakunt9.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 2 |  | metakunt9.2 | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 3 |  | metakunt9.3 | ⊢ ( 𝜑  →  𝐼  ≤  𝑀 ) | 
						
							| 4 |  | metakunt9.4 | ⊢ 𝐴  =  ( 𝑥  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑥  =  𝐼 ,  𝑀 ,  if ( 𝑥  <  𝐼 ,  𝑥 ,  ( 𝑥  −  1 ) ) ) ) | 
						
							| 5 |  | metakunt9.5 | ⊢ 𝐶  =  ( 𝑦  ∈  ( 1 ... 𝑀 )  ↦  if ( 𝑦  =  𝑀 ,  𝐼 ,  if ( 𝑦  <  𝐼 ,  𝑦 ,  ( 𝑦  +  1 ) ) ) ) | 
						
							| 6 |  | metakunt9.6 | ⊢ ( 𝜑  →  𝑋  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 7 | 1 2 3 4 5 6 | metakunt8 | ⊢ ( ( 𝜑  ∧  𝐼  <  𝑋 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 8 |  | elfznn | ⊢ ( 𝑋  ∈  ( 1 ... 𝑀 )  →  𝑋  ∈  ℕ ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ℕ ) | 
						
							| 10 | 9 | nnred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 11 | 2 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 12 | 10 11 | leloed | ⊢ ( 𝜑  →  ( 𝑋  ≤  𝐼  ↔  ( 𝑋  <  𝐼  ∨  𝑋  =  𝐼 ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 | metakunt6 | ⊢ ( ( 𝜑  ∧  𝑋  <  𝐼 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 14 | 1 2 3 4 5 6 | metakunt5 | ⊢ ( ( 𝜑  ∧  𝑋  =  𝐼 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 15 | 13 14 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑋  <  𝐼  ∨  𝑋  =  𝐼 ) )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝜑  →  ( ( 𝑋  <  𝐼  ∨  𝑋  =  𝐼 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) ) | 
						
							| 17 | 12 16 | sylbid | ⊢ ( 𝜑  →  ( 𝑋  ≤  𝐼  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝐼 )  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 19 | 7 18 11 10 | ltlecasei | ⊢ ( 𝜑  →  ( 𝐶 ‘ ( 𝐴 ‘ 𝑋 ) )  =  𝑋 ) |